194,998 research outputs found

    Crystal Distortion and the Two-Channel Kondo Effect

    Full text link
    We study a simple model of the two-channel Kondo effect in a distorted crystal. This model is then used to investigate the interplay of the Kondo and Jahn-Teller effects, and also the Kondo effect in an impure crystal. We find that the Jahn-Teller interaction modifies the characteristic energy scale of the system below which non-Fermi-liquid properties of the model become apparent. The modified energy scale tends to zero as the limit of a purely static Jahn-Teller effect is approached. We find also that the non-Fermi-liquid properties of the quadrupolar Kondo effect are not stable against crystal distortion caused by impurities.Comment: 11 page

    Non-minimal coupling and quantum entropy of black hole

    Get PDF
    Formulating the statistical mechanics for a scalar field with non-minimal ÎľRĎ•2\xi R \phi^2 coupling in a black hole background we propose modification of the original 't Hooft ``brick wall'' prescription. Instead of the Dirichlet condition we suggest some scattering ansatz for the field functions at the horizon. This modifies the energy spectrum of the system and allows one to obtain the statistical entropy dependent on the non-minimal coupling. For Îľ<0\xi<0 the entropy renormalizes the classical Bekenstein-Hawking entropy in the correct way and agrees with the result previously obtained within the conical singularity approach. For a positive Îľ\xi, however, the results differ.Comment: 16 pages, latex, no figures; an error in calculation of the entropy corrected, the entropy now is positive for any non-minimal couplin

    A Variational Sum-Rule Approach to Collective Excitations of a Trapped Bose-Einstein Condensate

    Full text link
    It is found that combining an excitation-energy sum rule with Fetter's trial wave function gives almost exact low-lying collective-mode frequencies of a trapped Bose-Einstein condensate at zero temperature.Comment: 11 pages, 2 figures, Revte

    The Importance of Audit Firm Characteristics and the Drivers of Auditor Change in UK Listed Companies

    Get PDF
    This paper explores the importance of audit firm characteristics and the factors motivating auditor change based on questionnaire responses from 210 listed UK companies (a response rate of 70%). Twenty-nine potentially desirable auditor characteristics are identified from the extant literature and their importance elicited. Exploratory factor analysis reduces these variables to eight uncorrelated underlying dimensions: reputation/quality; acceptability to third parties; value for money; ability to provide non-audit services; small audit firm; specialist industry knowledge; non-Big Six large audit firm; and geographical proximity. Insights into the nature of 'the Big Six factor' emerge. Two thirds of companies had recently considered changing auditors; the main reasons cited being audit fee level, dissatisfaction with audit quality and changes in top management. Of those companies that considered change, 73% did not actually do so, the main reasons cited being fee reduction by the incumbent and avoidance of disruption. Thus audit fee levels are both a key precipitator of change and a key factor in retaining the status quo

    Fundamental parameters of Cepheids. V. Additional photometry and radial velocity for southern Cepheids

    Get PDF
    I present photometric and radial velocity data for Galactic Cepheids, most of them being in the southern hemisphere. There are 1250 Geneva 7-color photometric measurements for 62 Cepheids, the average uncertainty per measurement is better than 0.01 mag. A total of 832 velocity measurements have been obtained with the CORAVEL radial velocity spectrograph for 46 Cepheids. The average accuracy of the radial velocity data is 0.38 km/s. There are 33 stars with both photometry and radial velocity data. I discuss the possible binarity or period change that these new data reveal. I also present reddenings for all Cepheids with photometry. The data are available electronically.Comment: To appear in ApJS. Data available electronically at ftp://cfa-ftp.harvard.edu/pub/dbersier

    Robust control of decoherence in realistic one-qubit quantum gates

    Full text link
    We present an open loop (bang-bang) scheme to control decoherence in a generic one-qubit quantum gate and implement it in a realistic simulation. The system is consistently described within the spin-boson model, with interactions accounting for both adiabatic and thermal decoherence. The external control is included from the beginning in the Hamiltonian as an independent interaction term. After tracing out the environment modes, reduced equations are obtained for the two-level system in which the effects of both decoherence and external control appear explicitly. The controls are determined exactly from the condition to eliminate decoherence, i.e. to restore unitarity. Numerical simulations show excellent performance and robustness of the proposed control scheme.Comment: 21 pages, 8 figures, VIth International Conference on Quantum Communication, Measurement and Computing (Boston, 2002

    Susskind's Challenge to the Hartle-Hawking No-Boundary Proposal and Possible Resolutions

    Get PDF
    Given the observed cosmic acceleration, Leonard Susskind has presented the following argument against the Hartle-Hawking no-boundary proposal for the quantum state of the universe: It should most likely lead to a nearly empty large de Sitter universe, rather than to early rapid inflation. Even if one adds the condition of observers, they are most likely to form by quantum fluctuations in de Sitter and therefore not see the structure that we observe. Here I present my own amplified version of this argument and consider possible resolutions, one of which seems to imply that inflation expands the universe to be larger than 10^{10^{10^{122}}} Mpc.Comment: 24 pages, LaTeX, 8 references added and a distinction between Linde's and Vilenkin's tunneling proposal

    Perturbative nonequilibrium dynamics of phase transitions in an expanding universe

    Get PDF
    A complete set of Feynman rules is derived, which permits a perturbative description of the nonequilibrium dynamics of a symmetry-breaking phase transition in λϕ4\lambda\phi^4 theory in an expanding universe. In contrast to a naive expansion in powers of the coupling constant, this approximation scheme provides for (a) a description of the nonequilibrium state in terms of its own finite-width quasiparticle excitations, thus correctly incorporating dissipative effects in low-order calculations, and (b) the emergence from a symmetric initial state of a final state exhibiting the properties of spontaneous symmetry breaking, while maintaining the constraint ≡0\equiv 0. Earlier work on dissipative perturbation theory and spontaneous symmetry breaking in Minkowski spacetime is reviewed. The central problem addressed is the construction of a perturbative approximation scheme which treats the initial symmetric state in terms of the field ϕ\phi, while the state that emerges at later times is treated in terms of a field ζ\zeta, linearly related to ϕ2\phi^2. The connection between early and late times involves an infinite sequence of composite propagators. Explicit one-loop calculations are given of the gap equations that determine quasiparticle masses and of the equation of motion for and the renormalization of these equations is described. The perturbation series needed to describe the symmetric and broken-symmetry states are not equivalent, and this leads to ambiguities intrinsic to any perturbative approach. These ambiguities are discussed in detail and a systematic procedure for matching the two approximations is described.Comment: 22 pages, using RevTeX. 6 figures. Submitted to Physical Review

    Optical and Thermal-Transport Properties of an Inhomogeneous d-Wave Superconductor

    Full text link
    We calculate transport properties of disordered 2D d-wave superconductors from solutions of the Bogoliubov-de Gennes equations, and show that weak localization effects give rise to a finite frequency peak in the optical conductivity similar to that observed in experiments on disordered cuprates. At low energies, order parameter inhomogeneities induce linear and quadratic temperature dependencies in microwave and thermal conductivities respectively, and appear to drive the system towards a quasiparticle insulating phase.Comment: 5 pages,3 figure

    Internal Friction and Vulnerability of Mixed Alkali Glasses

    Full text link
    Based on a hopping model we show how the mixed alkali effect in glasses can be understood if only a small fraction c_V ofthe available sites for the mobile ions is vacant. In particular, we reproduce the peculiar behavior of the internal friction and the steep fall (''vulnerability'') of the mobility of the majority ion upon small replacements by the minority ion. The single and mixed alkali internal friction peaks are caused by ion-vacancy and ion-ion exchange processes. If c_V is small, they can become comparable in height even at small mixing ratios. The large vulnerability is explained by a trapping of vacancies induced by the minority ions. Reasonable choices of model parameters yield typical behaviors found in experiments.Comment: 4 pages, 4 figure
    • …
    corecore