1,099 research outputs found
Weakly Enforced Boundary Conditions for the NURBS-Based Finite Cell Method
In this paper, we present a variationally consistent formulation for the weak enforcement
of essential boundary conditions as an extension to the finite cell method, a fictitious
domain method of higher order. The absence of boundary fitted elements in fictitious domain or
immersed boundary methods significantly restricts a strong enforcement of essential boundary
conditions to models where the boundary of the solution domain coincides with the embedding
analysis domain. Penalty methods and Lagrange multiplier methods are adequate means to
overcome this limitation but often suffer from various drawbacks with severe consequences for
a stable and accurate solution of the governing system of equations. In this contribution, we
follow the idea of NITSCHE [29] who developed a stable scheme for the solution of the Laplace
problem taking weak boundary conditions into account. An extension to problems from linear
elasticity shows an appropriate behavior with regard to numerical stability, accuracy and an
adequate convergence behavior. NURBS are chosen as a high-order approximation basis to
benefit from their smoothness and flexibility in the process of uniform model refinement
Phase-field boundary conditions for the voxel finite cell method: surface-free stress analysis of CT-based bone structures
The voxel finite cell method employs unfitted finite element meshes and voxel quadrature rules to seamlessly
transfer CT data into patient-specific bone discretizations. The method, however, still requires the explicit
parametrization of boundary surfaces to impose traction and displacement boundary conditions, which
constitutes a potential roadblock to automation. We explore a phase-field based formulation for imposing
traction and displacement constraints in a diffuse sense. Its essential component is a diffuse geometry model
generated from metastable phase-field solutions of the Allen-Cahn problem that assumes the imaging data as
initial condition. Phase-field approximations of the boundary and its gradient are then employed to transfer
all boundary terms in the variational formulation into volumetric terms. We show that in the context of the
voxel finite cell method, diffuse boundary conditions achieve the same accuracy as boundary conditions
defined over explicit sharp surfaces, if the inherent length scales, i.e., the interface width of the phase-field,
the voxel spacing and the mesh size, are properly related. We demonstrate the flexibility of the new method
by analyzing stresses in a human femur and a vertebral body
Acoustic observations of vertical and horizontal swimming velocities of a diel migrator
A strong sound scattering layer which underwent diel vertical migration was observed over 176 days using a bottom-mounted 600 kHz ADCP at a depth of approximately 285 m on the upper continental slope. Average observed descent times of the scatterers were within 12 minutes of sunrise and average ascent times were within 13 minutes of sunset. Average ascent speeds progressively increased away from the bed and approached 6 cm/s. Average descent speeds similarly reached a maximum of ∼6 cm/s. Horizontal velocities of the scatterers during vertical migration were found to be smaller than ambient velocities (by up to 3 cm/s), and it is inferred that the migrators were swimming horizontally against the flow. Horizontal velocities of the scatterers during time intervals when the layer was near the seafloor were found to be southwest (up to 3 cm/s), and onshelf (up to 1.7 cm/s) relative to the flow above the layer. Swimming velocities were independent of alongshelf flow direction, counter to the hypothesis that the scatterers sought to maintain their position by swimming against the flow
Association of smoking and nicotine dependence with pre-diabetes in young and healthy adults.
INTRODUCTION: Several studies have shown an increased risk of type 2 diabetes among smokers. Therefore, the aim of this analysis was to assess the relationship between smoking, cumulative smoking exposure and nicotine dependence with pre-diabetes.
METHODS: We performed a cross-sectional analysis of healthy adults aged 25-41 in the Principality of Liechtenstein. Individuals with known diabetes, Body Mass Index (BMI) >35 kg/m² and prevalent cardiovascular disease were excluded. Smoking behaviour was assessed by self-report. Pre-diabetes was defined as glycosylated haemoglobin between 5.7% and 6.4%. Multivariable logistic regression models were done.
RESULTS: Of the 2142 participants (median age 37 years), 499 (23.3%) had pre-diabetes. There were 1,168 (55%) never smokers, 503 (23%) past smokers and 471 (22%) current smokers, with a prevalence of pre-diabetes of 21.2%, 20.9% and 31.2%, respectively (p <0.0001). In multivariable regression models, current smokers had an odds ratio (OR) of pre-diabetes of 1.82 (95% confidential interval (CI) 1.39; 2.38, p <0.0001). Individuals with a smoking exposure of <5, 5-10 and >10 pack-years had an OR (95% CI) for pre-diabetes of 1.34 (0.90; 2.00), 1.80 (1.07; 3.01) and 2.51 (1.80; 3.59) (p linear trend <0.0001) compared with never smokers. A Fagerström score of 2, 3-5 and >5 among current smokers was associated with an OR (95% CI) for pre-diabetes of 1.27 (0.89; 1.82), 2.15 (1.48; 3.13) and 3.35 (1.73; 6.48) (p linear trend <0.0001).
DISCUSSION: Smoking is strongly associated with pre-diabetes in young adults with a low burden of smoking exposure. Nicotine dependence could be a potential mechanism of this relationship
- …