1,189 research outputs found

    Natural Color Image Enhancement based on Modified Multiscale Retinex Algorithm and Performance Evaluation usingWavelet Energy

    Full text link
    This paper presents a new color image enhancement technique based on modified MultiScale Retinex(MSR) algorithm and visual quality of the enhanced images are evaluated using a new metric, namely, wavelet energy. The color image enhancement is achieved by down sampling the value component of HSV color space converted image into three scales (normal, medium and fine) following the contrast stretching operation. These down sampled value components are enhanced using the MSR algorithm. The value component is reconstructed by averaging each pixels of the lower scale image with that of the upper scale image subsequent to up sampling the lower scale image. This process replaces dark pixel by the average pixels of both the lower scale and upper scale, while retaining the bright pixels. The quality of the reconstructed images in the proposed method is found to be good and far better then the other researchers method. The performance of the proposed scheme is evaluated using new wavelet domain based assessment criterion, referred as wavelet energy. This scheme computes the energy of both original and enhanced image in wavelet domain. The number of edge details as well as wavelet energy is less in a poor quality image compared with naturally enhanced image. Experimental results presented confirms that the proposed wavelet energy based color image quality assessment technique efficiently characterizes both the local and global details of enhanced image.Comment: 10 pages, 3 figures, Recent Advances in Intelligent Informatics Advances in Intelligent Systems and Computing Volume 235, 2014, pp 83-9

    Spin Decoherence from Hamiltonian dynamics in Quantum Dots

    Full text link
    The dynamics of a spin-1/2 particle coupled to a nuclear spin bath through an isotropic Heisenberg interaction is studied, as a model for the spin decoherence in quantum dots. The time-dependent polarization of the central spin is calculated as a function of the bath-spin distribution and the polarizations of the initial bath state. For short times, the polarization of the central spin shows a gaussian decay, and at later times it revives displaying nonmonotonic time dependence. The decoherence time scale dep ends on moments of the bath-spin distribuition, and also on the polarization strengths in various bath-spin channels. The bath polarizations have a tendency to increase the decoherence time scale. The effective dynamics of the central spin polarization is shown to be describ ed by a master equation with non-markovian features.Comment: 11 pages, 6 figures Accepted for publication in Phys.Rev

    Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte

    Full text link
    A major challenge in the development of new battery materials is understanding their fundamental mechanisms of operation and degradation. Their microscopically inhomogeneous nature calls for characterization tools that provide operando and localized information from individual grains and particles. Here we describe an approach that images the nanoscale distribution of ions during electrochemical charging of a battery in a transmission electron microscope liquid flow cell. We use valence energy-loss spectroscopy to track both solvated and intercalated ions, with electronic structure fingerprints of the solvated ions identified using an ab initio non-linear response theory. Equipped with the new electrochemical cell holder, nanoscale spectroscopy and theory, we have been able to determine the lithiation state of a LiFePO4 electrode and surrounding aqueous electrolyte in real time with nanoscale resolution during electrochemical charge and discharge. We follow lithium transfer between electrode and electrolyte and observe charging dynamics in the cathode that differ among individual particles. This technique represents a general approach for the operando nanoscale imaging of electrochemically active ions in a wide range of electrical energy storage systems

    Concurrence Vectors in Arbitrary Multipartite Quantum Systems

    Full text link
    For a given pure state of multipartite system, the concurrence vector is defined by employing the defining representation of generators of the corresponding rotation groups. The norm of concurrence vector is considered as a measure of entanglement. For multipartite pure state, the concurrence vector is regarded as the direct sum of concurrence subvectors in the sense that each subvector is associated with a pair of particles. It is proposed to use the norm of each subvector as the contribution of the corresponding pair in entanglement of the system.Comment: 9 pages, v3, section 3 is revise

    Production Mechanism for Quark Gluon Plasma in Heavy Ion Collisions

    Get PDF
    A general scheme is proposed here to describe the production of semi soft and soft quarks and gluons that form the bulk of the plasma in ultra relativistic heavy ion collisions. We show how to obtain rates as a function of time in a self consistent manner, without any ad-hoc assumption. All the required features - the dynamical nature of QCD vacuum, the non-Markovian nature of the production, and quasi particle nature of the partons, and the importance of quantum interference effects are naturally incorporated. We illustrate the results with a realistic albeit toy model and show how almost all the currently employed source terms are unreliable in their predictions. We show the rates in the momentum space and indicate at the end how to extract the full phase-space dependence.Comment: 4 pages, 4 figures, two colum

    Concurrence classes for general pure multipartite states

    Full text link
    We propose concurrence classes for general pure multipartite states based on an orthogonal complement of a positive operator valued measure on quantum phase. In particular, we construct WmW^{m} class, GHZmGHZ^{m}, and GHZm1GHZ^{m-1} class concurrences for general pure mm-partite states. We give explicit expressions for W3W^{3} and GHZ3GHZ^{3} class concurrences for general pure three-partite states and for W4W^{4}, GHZ4GHZ^{4}, and GHZ3GHZ^{3} class concurrences for general pure four-partite states.Comment: 14 page
    corecore