14,626 research outputs found

    Using Red Clump Stars to Decompose the Galactic Magnetic Field with Distance

    Full text link
    A new method for measuring the large-scale structure of the Galactic magnetic field is presented. The Galactic magnetic field has been probed through the Galactic disk with near-infrared starlight polarimetry, however the distance to each background star is unknown. Using red clump stars as near-infrared standard candles, this work presents the first attempt to decompose the line of sight structure of the sky-projected Galactic magnetic field. Two example lines-of-sight are decomposed: toward a field with many red clump stars and toward a field with few red clump stars. A continuous estimate of magnetic field orientation over several kiloparsecs of distance is possible in the field with many red clump stars, while only discrete estimates are possible in the sparse example. toward the Outer Galaxy, there is a continuous field orientation with distance that shows evidence of perturbation by the Galactic warp. toward the Inner Galaxy, evidence for a large-scale change in the magnetic field geometry is consistent with models of magnetic field reversals, independently derived from Faraday rotation studies. A photo-polarimetric method for identifying candidate intrinsically polarized stars is also presented. The future application of this method to large regions of the sky will begin the process of mapping the Galactic magnetic field in a way never before possible.Comment: 11 pages, 8 figures, 2 tables, accepted for publication in The Astronomical Journa

    A Lack of Resolved Near-Infrared Polarization Across the Face of M51

    Get PDF
    The galaxy M51 was observed using the Mimir instrument on the Perkins telescope to constrain the resolved H-band (1.6 μ\mum) polarization across the galaxy. These observations place an upper limit of PH<0.05P_H<0.05% on the HH-band polarization across the face of M51, at 0.6 arcsecond pixel sampling. Even with smoothing to coarser angular resolutions, to reduce polarization uncertainty, the HH-band polarization remains undetected. The polarization upper limit at HH-band, when combined with previous resolved optical polarimetry, rules out a Serkowski-like polarization dependence on wavelength. Other polarization mechanisms cannot account for the observed polarization ratio (PH/PVRI0.05P_H/P{VRI} \lesssim 0.05) across the face of M51.Comment: 4 pages, 2 figures, Accepted for publication in ApJ

    Noise residuals for GW150914 using maximum likelihood and numerical relativity templates

    Full text link
    We reexamine the results presented in a recent work by Nielsen et al. [1], in which the properties of the noise residuals in the 40\,ms chirp domain of GW150914 were investigated. This paper confirmed the presence of strong (i.e., about 0.80) correlations between residual noise in the Hanford and Livingston detectors in the chirp domain as previously seen by us [2] when using a numerical relativity template given in [3]. It was also shown in [1] that a so-called maximum likelihood template can reduce these statistically significant cross-correlations. Here, we demonstrate that the reduction of correlation and statistical significance is due to (i) the use of a peculiar template which is qualitatively different from the properties of GW150914 originally published by LIGO, (ii) a suspicious MCMC chain, (iii) uncertainties in the matching of the maximum likelihood (ML) template to the data in the Fourier domain, and (iv) a biased estimation of the significance that gives counter-intuitive results. We show that rematching the maximum likelihood template to the data in the 0.2\,s domain containing the GW150914 signal restores these correlations at the level of 60%60\% of those found in [1]. With necessary corrections, the probability given in [1] will decrease by more than one order of magnitude. Since the ML template is itself problematic, results associated with this template are illustrative rather than final.Comment: Minor correction

    The stickiness of sound: An absolute lower limit on viscosity and the breakdown of second order relativistic hydrodynamics

    Full text link
    Hydrodynamics predicts long-lived sound and shear waves. Thermal fluctuations in these waves can lead to the diffusion of momentum density, contributing to the shear viscosity and other transport coefficients. Within viscous hydrodynamics in 3+1 dimensions, this leads to a positive contribution to the shear viscosity, which is finite but inversely proportional to the microscopic shear viscosity. Therefore the effective infrared viscosity is bounded from below. The contribution to the second-order transport coefficient τπ\tau_\pi is divergent, which means that second-order relativistic viscous hydrodynamics is inconsistent below some frequency scale. We estimate the importance of each effect for the Quark-Gluon Plasma, finding them to be minor if η/s=0.16\eta/s = 0.16 but important if η/s=0.08\eta/s = 0.08.Comment: 16 pages including two figure

    Black holes and non-relativistic quantum systems

    Full text link
    We describe black holes in d+3 dimensions, whose thermodynamic properties correspond to those of a scale invariant non-relativistic d+1 dimensional quantum system with dynamical exponent z=2. The gravitational model involves a massive abelian vector field and a scalar field, in addition to the metric. The energy per particle in the dual theory is μd/(d+2)|\mu| d/(d+2), exactly as in a non-interacting Fermi gas, while the ratio of shear viscosity to entropy density is /4π\hbar/4\pi.Comment: 8 pages; v2: discussion modifie
    corecore