21,565 research outputs found
The Progenitor Dependence of the Preexplosion Neutrino Emission in Core-Collapse Supernovae
We perform spherically-symmetric general-relativistic simulations of core
collapse and the postbounce preexplosion phase in 32 presupernova stellar
models of solar metallicity with zero-age-main-sequence masses of 12 M_{sun} to
120 M_{sun}. Using energy-dependent three-species neutrino transport in the
two-moment approximation with an analytic closure, we show that the emitted
neutrino luminosities and spectra follow very systematic trends that are
correlated with the compactness (~M/R) of the progenitor star's inner regions
via the accretion rate in the preexplosion phase. We find that these
qualitative trends depend only weakly on the nuclear equation of state, but
quantitative observational statements will require independent constraints on
the equation of state and the rotation rate of the core as well as a more
complete understanding of neutrino oscillations. We investigate the simulated
response of water Cherenkov detectors to the electron antineutrino fluxes from
our models and find that the large statistics of a galactic core collapse event
may allow robust conclusions on the inner structure of the progenitor star.Comment: 16 emulateapj pages, 10 figures, 1 table. matches published versio
Supernova Fallback onto Magnetars and Propeller-powered Supernovae
We explore fallback accretion onto newly born magnetars during the supernova of massive stars. Strong magnetic fields (~10^(15) G) and short spin periods (~1-10 ms) have an important influence on how the magnetar interacts with the infalling material. At long spin periods, weak magnetic fields, and high accretion rates, sufficient material is accreted to form a black hole, as is commonly found for massive progenitor stars. When B ≾ 5 × 10^(14) G, accretion causes the magnetar to spin sufficiently rapidly to deform triaxially and produces gravitational waves, but only for ≈50-200 s until it collapses to a black hole. Conversely, at short spin periods, strong magnetic fields, and low accretion rates, the magnetar is in the "propeller regime" and avoids becoming a black hole by expelling incoming material. This process spins down the magnetar, so that gravitational waves are only expected if the initial protoneutron star is spinning rapidly. Even when the magnetar survives, it accretes at least ≈0.3 M_☉, so we expect magnetars born within these types of environments to be more massive than the 1.4 M_☉ typically associated with neutron stars. The propeller mechanism converts the ~10^(52)erg of spin energy in the magnetar into the kinetic energy of an outflow, which shock heats the outgoing supernova ejecta during the first ~10-30 s. For a small ~5 M_☉ hydrogen-poor envelope, this energy creates a brighter, faster evolving supernova with high ejecta velocities ~(1-3) × 10^4 km s^(–1) and may appear as a broad-lined Type Ib/c supernova. For a large ≳ 10 M_☉ hydrogen-rich envelope, the result is a bright Type IIP supernova with a plateau luminosity of ≳ 10^(43)erg s^(–1) lasting for a timescale of ~60-80 days
The Gravitational Wave Signature of Core-Collapse Supernovae
We review the ensemble of anticipated gravitational-wave (GW) emission
processes in stellar core collapse and postbounce core-collapse supernova
evolution. We discuss recent progress in the modeling of these processes and
summarize most recent GW signal estimates. In addition, we present new results
on the GW emission from postbounce convective overturn and protoneutron star
g-mode pulsations based on axisymmetric radiation-hydrodynamic calculations.
Galactic core-collapse supernovae are very rare events, but within 3-5 Mpc from
Earth, the rate jumps to 1 in ~2 years. Using the set of currently available
theoretical gravitational waveforms, we compute upper-limit optimal
signal-to-noise ratios based on current and advanced LIGO/GEO600/VIRGO noise
curves for the recent SN 2008bk which exploded at ~3.9 Mpc. While initial LIGOs
cannot detect GWs emitted by core-collapse events at such a distance, we find
that advanced LIGO-class detectors could put significant upper limits on the GW
emission strength for such events. We study the potential occurrence of the
various GW emission processes in particular supernova explosion scenarios and
argue that the GW signatures of neutrino-driven, magneto-rotational, and
acoustically-driven core-collapse SNe may be mutually exclusive. We suggest
that even initial LIGOs could distinguish these explosion mechanisms based on
the detection (or non-detection) of GWs from a galactic core-collapse
supernova.Comment: Topical Review, accepted for publication in CQG. 51 pages, 13
figures, a version of the article with high-resolution figures is available
from http://stellarcollapse.org/papers/Ott_SN_GW_review2008.pdf. Update:
Added section on core collapse simulations and the treatment of general
relativit
Low-mass X-ray binaries from black-hole retaining globular clusters
Recent studies suggest that globular clusters (GCs) may retain a substantial
population of stellar-mass black holes (BHs), in contrast to the long-held
belief of a few to zero BHs. We model the population of BH low-mass X-ray
binaries (BH-LMXBs), an ideal observable proxy for elusive single BHs, produced
from a representative group of Milky Way GCs with variable BH populations. We
simulate the formation of BH-binaries in GCs through exchange interactions
between binary and single stars in the company of tens to hundreds of BHs.
Additionally, we consider the impact of the BH population on the rate of
compact binaries undergoing gravitational wave driven mergers. The
characteristics of the BH-LMXB population and binary properties are sensitive
to the GCs structural parameters as well as its unobservable BH population. We
find that GCs retaining BHs produce a galactic population of ejected BH-LMXBs whereas GCs retaining only BHs produce zero
ejected BH-LMXBs. Moreover, we explore the possibility that some of the
presently known BH-LMXBs might have originated in GCs and identify five
candidate systems.Comment: 27 pages, 18 figures, 7 tables, submitted to MNRA
Recommended from our members
Fabrication of Bone Substitute Material by Rapid Prototyping
Bone tissue engineering has gained much attention in recent years. A key requirement in this
field is the development of scaffold structures, on which cells adhere. This can be done by
fabricating scaffolds by direct procedures like 3D-printing or by indirect procedures like casting.
With the 3D-printing process different structures were build up by using hydroxyapatite powder
(HA) and a special binder material. Afterwards the printed 3D structures were sintered.
For the casting process molds have been made of different resins by stereolithography and other
processes using polymers and waxes. These structures were filled by a suspension of HA. By
heating the resulting polymer/ceramic composite to a specific temperature it is possible to
combust the polymer or wax. By further heating the remaining body, the HA is sintered.
Compared to the 3D printing a better resolution can be obtained here. But there are restrictions
regarding the ratio of polymer and the HA ceramic during the heating process which means a
limitation for the level of porosity.Mechanical Engineerin
Implicit large eddy simulations of anisotropic weakly compressible turbulence with application to core-collapse supernovae
(Abridged) In the implicit large eddy simulation (ILES) paradigm, the
dissipative nature of high-resolution shock-capturing schemes is exploited to
provide an implicit model of turbulence. Recent 3D simulations suggest that
turbulence might play a crucial role in core-collapse supernova explosions,
however the fidelity with which turbulence is simulated in these studies is
unclear. Especially considering that the accuracy of ILES for the regime of
interest in CCSN, weakly compressible and strongly anisotropic, has not been
systematically assessed before. In this paper we assess the accuracy of ILES
using numerical methods most commonly employed in computational astrophysics by
means of a number of local simulations of driven, weakly compressible,
anisotropic turbulence. We report a detailed analysis of the way in which the
turbulent cascade is influenced by the numerics. Our results suggest that
anisotropy and compressibility in CCSN turbulence have little effect on the
turbulent kinetic energy spectrum and a Kolmogorov scaling is
obtained in the inertial range. We find that, on the one hand, the kinetic
energy dissipation rate at large scales is correctly captured even at
relatively low resolutions, suggesting that very high effective Reynolds number
can be achieved at the largest scales of the simulation. On the other hand, the
dynamics at intermediate scales appears to be completely dominated by the
so-called bottleneck effect, \ie the pile up of kinetic energy close to the
dissipation range due to the partial suppression of the energy cascade by
numerical viscosity. An inertial range is not recovered until the point where
relatively high resolution , which would be difficult to realize in
global simulations, is reached. We discuss the consequences for CCSN
simulations.Comment: 17 pages, 9 figures, matches published versio
- …
