36 research outputs found

    How chip size impacts steam pretreatment effectiveness for biological conversion of poplar wood into fermentable sugars

    Get PDF
    BACKGROUND: Woody biomass is highly recalcitrant to enzymatic sugar release and often requires significant size reduction and severe pretreatments to achieve economically viable sugar yields in biological production of sustainable fuels and chemicals. However, because mechanical size reduction of woody biomass can consume significant amounts of energy, it is desirable to minimize size reduction and instead pretreat larger wood chips prior to biological conversion. To date, however, most laboratory research has been performed on materials that are significantly smaller than applicable in a commercial setting. As a result, there is a limited understanding of the effects that larger biomass particle size has on the effectiveness of steam explosion pretreatment and subsequent enzymatic hydrolysis of wood chips. RESULTS: To address these concerns, novel downscaled analysis and high throughput pretreatment and hydrolysis (HTPH) were applied to examine whether differences exist in the composition and digestibility within a single pretreated wood chip due to heterogeneous pretreatment across its thickness. Heat transfer modeling, Simons’ stain testing, magnetic resonance imaging (MRI), and scanning electron microscopy (SEM) were applied to probe the effects of pretreatment within and between pretreated wood samples to shed light on potential causes of variation, pointing to enzyme accessibility (i.e., pore size) distribution being a key factor dictating enzyme digestibility in these samples. Application of these techniques demonstrated that the effectiveness of pretreatment of Populus tremuloides can vary substantially over the chip thickness at short pretreatment times, resulting in spatial digestibility effects and overall lower sugar yields in subsequent enzymatic hydrolysis. CONCLUSIONS: These results indicate that rapid decompression pretreatments (e.g., steam explosion) that specifically alter accessibility at lower temperature conditions are well suited for larger wood chips due to the non-uniformity in temperature and digestibility profiles that can result from high temperature and short pretreatment times. Furthermore, this study also demonstrated that wood chips were hydrated primarily through the natural pore structure during pretreatment, suggesting that preserving the natural grain and transport systems in wood during storage and chipping processes could likely promote pretreatment efficacy and uniformity

    Single-Site Binding of Pyrene to Poly(ester-Imide)s Incorporating Long Spacer Units: Prediction of NMR Resonance-Patterns from a Fractal Model

    No full text
    Co-polycondensation of the diimide-based diols N,N\u27-bis(2-hydroxyethyl)hexafluoro-isopropylidene-diphthalimide, (HFDI), and N,N\u27-bis(2-hydroxy-ethyl)naphthalene-1,4,5,8-tetracarboxylic-diimide, (NDI), with aliphatic diacyl chlorides ClOC(CH2)xCOCl (x = 5 to 8) affords linear copoly(ester-imide)s. Such copolymers interact with pyrene via supramolecular binding of the polycyclic aromatic molecule at NDI residues. This results in upfield complexation shifts and sequence-related splittings of the NDI 1H NMR resonances, but gives a very different resonance-pattern from the corresponding copolymer where x = 2. Computational modelling of the polymer with x = 5 suggests that, in this system, each pyrene molecule binds to just a single NDI residue rather than to an adjacent pair of NDI\u27s in a tight chain-fold ("dual-site" binding) as found for x = 2. The new single-site binding model enables the pattern of 1H NMR resonances for copolymers with longer spacers (x = 5 to 8) to be reproduced and assigned by simulation from sequence-specific shielding factors based on the fractal known as the fourth-quarter Cantor set. As this set also enables an understanding of dual-site binding systems, it evidently provides a general numerical framework for supramolecular sequence-analysis in binary copolymers

    Gestion des fonctions de securite par automate programmable dedie a la securite (APIdS)

    No full text
    Available from INIST (FR), Document Supply Service, under shelf-number : 18477, issue : a.2002 n.224 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEFRFranc

    Special Feature

    No full text
    corecore