31,746 research outputs found
Zeros of Systems of -adic Quadratic Forms
It is shown that a system of quadratic forms over a -adic
field has a non-trivial common zero as soon as the number of variables exceeds
, providing that the residue class field has cardinality at least .Comment: Revised version, with better treatment and results for characteristic
The largest prime factor of
The largest prime factor of has been investigated by Hooley, who gave a conditional proof that it is infinitely often at least as large as , with a certain positive constant . It is trivial to obtain such a result with . One may think of Hooley's result as an approximation to the conjecture that is infinitely often prime. The condition required by Hooley, his R conjecture, gives a non-trivial bound for short Ramanujan-Kloosterman sums. The present paper gives an unconditional proof that the largest prime factor of is infinitely often at least as large as , though with a much smaller constant than that obtained by Hooley. In order to do this we prove a non-trivial bound for short Ramanujan-Kloosterman sums with smooth modulus. It is also necessary to modify the Chebychev method, as used by Hooley, so as to ensure that the sums that occur do indeed have a sufficiently smooth modulus
- …
