82,786 research outputs found
On a nonlinear recurrent relation
We study the limiting behavior for the solutions of a nonlinear recurrent
relation which arises from the study of Navier-Stokes equations. Some stability
theorems are also shown concerning a related class of linear recurrent
relations.Comment: to appear in Journal of Statistical Physic
Implementation of quantum algorithms with resonant interactions
We propose a scheme for implementing quantum algorithms with resonant
interactions. Our scheme only requires resonant interactions between two atoms
and a cavity mode, which is simple and feasible. Moreover, the implementation
would be an important step towards the fabrication of quantum computers in
cavity QED system.Comment: 4 pages, 3 figure
A Novel Scheme for Material Updating in Source Distribution Optimization of Magnetic Devices using Sensitivity Analysis
A novel material updating scheme, which does not require intermediate states of a material used, is presented for source distribution optimization problems. A mutation factor to determine a degree of topological change in the next design stage on the basis of a current layout accelerates the convergence of an objective function. Easy implementation and fast convergence of the scheme are verified using two MRI design problems where current and permanent magnet distributions have been optimized, respectively
Effect of the Kondo correlation on thermopower in a Quantum Dot
In this paper we study the thermopower of a quantum dot connected to two
leads in the presence of Kondo correlation by employing a modified second-order
perturbation scheme at nonequilibrium. A simple scheme, Ng's ansatz [Phys. Rev.
Lett. {\bf 76}, 487 (1996)], is adopted to calculate nonequilibrium
distribution Green's function and its validity is further checked with regard
to the Onsager relation. Numerical results demonstrate that the sign of the
thermopower can be changed by tuning the energy level of the quantum dot,
leading to a oscillatory behavior with a suppressed magnitude due to the Kondo
effect. We also calculate the thermal conductance of the system, and find that
the Wiedemann-Franz law is obeyed at low temperature but violated with
increasing temperature, corresponding to emerging and quenching of the Kondo
effect.Comment: 6 pages, 4 figures; accepted for publication in J Phys.: Condensed
Matte
- …
