198 research outputs found

    Higher order corrections to Heterotic M-theory inflation

    Full text link
    We investigate inflation driven by NN dynamical five-branes in Heterotic M-theory using the scalar potential derived from the open membrane instanton sector. At leading order the resulting theory can be mapped to power law inflation, however more generally one may expect higher order corrections to be important. We consider a simple class of such corrections, which imposes tight bounds on the number of branes required for inflation.Comment: 10 pages, 2 figure

    Reheating the Universe After Multi-Field Inflation

    Full text link
    We study in detail (p)reheating after multi-field inflation models with a particular focus on N-flation. We consider a variety of different couplings between the inflatons and the matter sector, including both quartic and trilinear interactions with a light scalar field. We show that the presence of multiple oscillating inflatons makes parametric resonance inefficient in the case of the quartic interactions. Moreover, perturbative processes do not permit a complete decay of the inflaton for this coupling. In order to recover the hot big bang, we must instead consider trilinear couplings. In this case we show that strong nonperturbative preheating is possible via multi-field tachyonic resonance. In addition, late-time perturbative effects do permit a complete decay of the condensate. We also study the production of gauge fields for several prototype couplings, finding similar results to the trilinear scalar coupling. During the course of our analysis we develop the mathematical theory of the quasi-periodic Mathieu equation, the multi-field generalization of the Floquet theory familiar from preheating after single field inflation. We also elaborate on the theory of perturbative decays of a classical inflaton condensate, which is applicable in single-field models also.Comment: 46+1 pages, 19 figure

    Vector Perturbations in a Contracting Universe

    Full text link
    In this note we show that vector perturbations exhibit growing mode solutions in a contracting Universe, such as the contracting phase of the Pre Big Bang or the Cyclic/Ekpyrotic models of the Universe. This is not a gauge artifact and will in general lead to the breakdown of perturbation theory -- a severe problem that has to be addressed in any bouncing model. We also comment on the possibility of explaining, by means of primordial vector perturbations, the existence of the observed large scale magnetic fields. This is possible since they can be seeded by vorticity.Comment: v3. Two reference added; Identical with version accepted for publication at PR

    Non-Gaussianities in N-flation

    Full text link
    We compute non-Gaussianities in N-flation, a string motivated model of assisted inflation with quadratic, separable potentials and masses given by the Marcenko-Pastur distribution. After estimating parameters characterizing the bi- and trispectrum in the horizon crossing approximation, we focus on the non-linearity parameter fNLf_{NL}, a measure of the bispectrum; we compute its magnitude for narrow and broad spreads of masses, including the evolution of modes after horizon crossing. We identify additional contributions due to said evolution and show that they are suppressed as long as the fields are evolving slowly. This renders N\mathcal{N}-flation indistinguishable from simple single-field models in this regime. Larger non-Gaussianities are expected to arise for fields that start to evolve faster, and we suggest an analytic technique to estimate their contribution. However, such fast roll during inflation is not expected in N-flation, leaving (p)re-heating as the main additional candidate for generating non-Gaussianities.Comment: 27 pages, 4 figures, extended references to match version accepted in JCA

    A Terminal Velocity on the Landscape: Particle Production near Extra Species Loci in Higher Dimensions

    Full text link
    We investigate particle production near extra species loci (ESL) in a higher dimensional field space and derive a speed limit in moduli space at weak coupling. This terminal velocity is set by the characteristic ESL-separation and the coupling of the extra degrees of freedom to the moduli, but it is independent of the moduli's potential if the dimensionality of the field space is considerably larger than the dimensionality of the loci, D >> d. Once the terminal velocity is approached, particles are produced at a plethora of nearby ESLs, preventing a further increase in speed via their backreaction. It is possible to drive inflation at the terminal velocity, providing a generalization of trapped inflation with attractive features: we find that more than sixty e-folds of inflation for sub-Planckian excursions in field space are possible if ESLs are ubiquitous, without fine tuning of initial conditions and less tuned potentials. We construct a simple, observationally viable model with a slightly red scalar power-spectrum and suppressed gravitational waves; we comment on the presence of additional observational signatures originating from IR-cascading and individual massive particles. We also show that moduli-trapping at an ESL is suppressed for D >> d, hindering dynamical selection of high-symmetry vacua on the landscape based on this mechanism.Comment: 46 pages, 6 figures. V3: typos corrected compared to JHEP version, conclusions unchange

    Scale dependence of fNLf_{NL} in N-flation

    Full text link
    Adopting the horizon-crossing approximation, we derive the spectral index of fNLf_{NL} in general N-flation model. Axion N-flation model is taken as a typical model for generating a large fNLf_{NL} which characterizes the size of local form bispectrum. We find that its tilt nfNLn_{f_{NL}} is negligibly small when all inflatons have the same potential, but a negative detectable nfNLn_{f_{NL}} can be achieved in the axion N-flation with different decay constants for different inflatons. The measurement of nfNLn_{f_{NL}} can be used to support or falsify the axion N-flation in the near future.Comment: 15 pages, 2 figures; a subsection with detectable scale dependence of f_NL added; more discussions added and version accepted for publication in JCA

    Preheating after N-flation

    Full text link
    We study preheating in N-flation, assuming the Mar\v{c}enko-Pastur mass distribution, equal energy initial conditions at the beginning of inflation and equal axion-matter couplings, where matter is taken to be a single, massless bosonic field. By numerical analysis we find that preheating via parametric resonance is suppressed, indicating that the old theory of perturbative preheating is applicable. While the tensor-to-scalar ratio, the non-Gaussianity parameters and the scalar spectral index computed for N-flation are similar to those in single field inflation (at least within an observationally viable parameter region), our results suggest that the physics of preheating can differ significantly from the single field case.Comment: 14 pages, 14 figures, references added, fixed typo

    Local non-Gaussianity from rapidly varying sound speeds

    Get PDF
    We study the effect of non-trivial sound speeds on local-type non-Gaussianity during multiple-field inflation. To this end, we consider a model of multiple-field DBI and use the deltaN formalism to track the super-horizon evolution of perturbations. By adopting a sum separable Hubble parameter we derive analytic expressions for the relevant quantities in the two-field case, valid beyond slow variation. We find that non-trivial sound speeds can, in principle, curve the trajectory in such a way that significant local-type non-Gaussianity is produced. Deviations from slow variation, such as rapidly varying sound speeds, enhance this effect. To illustrate our results we consider two-field inflation in the tip regions of two warped throats and find large local-type non-Gaussianity produced towards the end of the inflationary process.Comment: 30 pages, 7 figures; typos corrected, references added, accepted for publication in JCA

    Rotational inhomogeneities from pre-big bang?

    Full text link
    The evolution of the rotational inhomogeneities is investigated in the specific framework of four-dimensional pre-big bang models. While minimal (dilaton-driven) scenarios do not lead to rotational fluctuations, in the case of non-minimal (string-driven) models, fluid sources are present in the pre-big bang phase. The rotational modes of the geometry, coupled to the divergenceless part of the velocity field, can then be amplified depending upon the value of the barotropic index of the perfect fluids. In the light of a possible production of rotational inhomogeneities, solutions describing the coupled evolution of the dilaton field and of the fluid sources are scrutinized in both the string and Einstein frames. In semi-realistic scenarios, where the curvature divergences are regularized by means of a non-local dilaton potential, the rotational inhomogeneities are amplified during the pre-big bang phase but they decay later on. Similar analyses can also be performed when a contraction occurs directly in the string frame metric.Comment: 21 pages, corrected typos, references added; to appear in Class. Quantum Gra

    Local Features with Large Spiky non-Gaussianities during Inflation

    Full text link
    We provide a dynamical mechanism to generate localized features during inflation. The local feature is due to a sharp waterfall phase transition which is coupled to the inflaton field. The key effect is the contributions of waterfall quantum fluctuations which induce a sharp peak on the curvature perturbation which can be as large as the background curvature perturbation from inflaton field. Due to non-Gaussian nature of waterfall quantum fluctuations a large spike non-Gaussianity is produced which is narrowly peaked at modes which leave the Hubble radius at the time of phase transition. The large localized peaks in power spectrum and bispectrum can have interesting consequences on CMB anisotropies.Comment: 22 pages, 2 figure
    corecore