20 research outputs found

    c-erbB2–induced Disruption of Matrix Adhesion and Morphogenesis Reveals a Novel Role for Protein Kinase B as a Negative Regulator of α(2)ÎČ(1) Integrin Function

    No full text
    Overexpression of the growth factor receptor subunit c-erbB2, leading to its ligand-independent homodimerization and activation, has been implicated in the pathogenesis of mammary carcinoma. Here, we have examined the effects of c-erbB2 on the adhesive properties of a mammary epithelial cell line, HB2/tnz34, in which c-erbB2 homodimerization can be induced by means of a transfected hybrid “trk-neu” construct. trk-neu consists of the extracellular domain of the trkA nerve growth factor (NGF) receptor fused to the transmembrane and cytoplasmic domains of c-erbB2, allowing NGF-induced c-erbB2 homodimer signaling. Both spreading and adhesion on collagen surfaces were impaired on c-erbB2 activation in HB2/tnz34 cells. Antibody-mediated stimulation of α(2)ÎČ(1) integrin function restored adhesion, suggesting a direct role for c-erbB2 in integrin inactivation. Using pharmacological inhibitors and transient transfections, we identified signaling pathways required for suppression of integrin function by c-erbB2. Among these was the MEK-ERK pathway, previously implicated in integrin inactivation. However, we could also show that downstream of phosphoinositide-3-kinase (PI3K), protein kinase B (PKB) acted as a previously unknown, potent inhibitor of integrin function and mediator of the disruptive effects of c-erbB2 on adhesion and morphogenesis. The integrin-linked kinase, previously identified as a PKB coactivator, was also found to be required for integrin inactivation by c-erbB2. In addition, the PI3K-dependent mTOR/S6 kinase pathway was shown to mediate c-erbB2–induced inhibition of adhesion (but not spreading) independently of PKB. Overexpression of MEK1 or PKB suppressed adhesion without requirement for c-erbB2 activation, suggesting that these two pathways partake in integrin inhibition by targeting common downstream effectors. These results demonstrate a major novel role for PI3K and PKB in regulation of integrin function
    corecore