10,776 research outputs found
Hall plateau diagram for the Hofstadter butterfly energy spectrum
We extensively study the localization and the quantum Hall effect in the
Hofstadter butterfly, which emerges in a two-dimensional electron system with a
weak two-dimensional periodic potential. We numerically calculate the Hall
conductivity and the localization length for finite systems with the disorder
in general magnetic fields, and estimate the energies of the extended levels in
an infinite system. We obtain the Hall plateau diagram on the whole region of
the Hofstadter butterfly, and propose a theory for the evolution of the plateau
structure with increasing disorder. There we show that a subband with the Hall
conductivity has separated bunches of extended levels, at least
for an integer . We also find that the clusters of the subbands with
identical Hall conductivity, which repeatedly appear in the Hofstadter
butterfly, have a similar localization property.Comment: 9 pages, 12 figure
Quantum oscillations in a topological insulator Bi_{1-x}Sb_{x}
We have studied transport and magnetic properties of Bi_{1-x}Sb_x, which is
believed to be a topological insulator - a new state of matter where an
insulating bulk supports an intrinsically metallic surface. In nominally
insulating Bi_{0.91}Sb_{0.09} crystals, we observed strong quantum oscillations
of the magnetization and the resistivity originating from a Fermi surface which
has a clear two-dimensional character. In addition, a three-dimensional Fermi
surface is found to coexist, which is possibly due to an unusual coupling of
the bulk to the surface. This finding demonstrates that quantum oscillations
can be a powerful tool to directly probe the novel electronic states in
topological insulators.Comment: 4 pages, 4 figure
nature of the superdeformed band of and the evolution of the molecular structure
The relation between the superdeformed band of and molecular bands is studied by the deformed-base
antisymmetrized molecular dynamics with the Gogny D1S force. It is found that
the obtained superdeformed band members of have considerable
amount of the component. Above the superdeformed
band, we have obtained two excited rotational bands which have more prominent
character of the molecular band. These three
rotational bands are regarded as a series of
molecular bands which were predicted by using the unique
- optical potentil. As the excitation energy and principal
quantum number of the relative motion increase, the cluster structure becomes more prominent but at the same time, the band
members are fragmented into several states
Metal-to-Insulator Crossover in the Low-Temperature Normal State of Bi_{2}Sr_{2-x}La_{x}CuO_{6+\delta}
We measure the normal-state in-plane resistivity of La-doped Bi-2201 single
crystals at low temperatures by suppressing superconductivity with 60-T pulsed
magnetic fields. With decreasing hole doping, we observe a crossover from a
metallic to insulating behavior in the low-temperature normal state. This
crossover is estimated to occur near 1/8 doping, well inside the underdoped
regime, and not at optimum doping as reported for other cuprates. The
insulating regime is marked by a logarithmic temperature dependence of the
resistivity over two decades of temperature, suggesting that a peculiar charge
localization is common to the cuprates.Comment: 4 pages, 5 figures, accepted for publication in PR
Fees in an Imperfect World: An Application to Motor Vehicle Emissions
This paper compares an emissions fee on measured vehicle emissions rates to a mandatory regulation that requires all vehicles to maintain emissions below a minimum standard. We model the motorist’s decision under the fee policy and simulate the fee and regulatory policies using data from an emissions inspection program that includes test and repair information for more than 50,000 vehicles. Under ideal conditions with perfect information and no subsidies, the fee on emissions rates performs substantially better than the regulatory policy. When more realistic modeling of available information and market conditions are included, there is little difference in the cost and effectiveness of the fee and regulatory programs. In particular, we find that the ability of the polluter to assess the emissions and cost outcomes of is critical importance for the performance of the fee policy.pollution fees, emissions control, vehicle pollution, inspection and maintenance
Coherence and superconductivity in coupled one-dimensional chains: a case study of YBaCuO
We report the infrared (IR) response of Cu-O chains in the high-
superconductor YBaCuO over the doping range spanning . We find evidence for a power law scaling at mid-IR frequencies
consistent with predictions for Tomonaga-Luttinger liquid, thus supporting the
notion of one-dimensional transport in the chains. We analyze the role of
coupling to the CuO planes in establishing metallicity and
superconductivity in disordered chain fragments.Comment: 4 pages, 3 figure
Oscillatory angular dependence of the magnetoresistance in a topological insulator Bi_{1-x}Sb_{x}
The angular-dependent magnetoresistance and the Shubnikov-de Haas
oscillations are studied in a topological insulator Bi_{0.91}Sb_{0.09}, where
the two-dimensional (2D) surface states coexist with a three-dimensional (3D)
bulk Fermi surface (FS). Two distinct types of oscillatory phenomena are
discovered in the angular-dependence: The one observed at lower fields is shown
to originate from the surface state, which resides on the (2\bar{1}\bar{1})
plane, giving a new way to distinguish the 2D surface state from the 3D FS. The
other one, which becomes prominent at higher fields, probably comes from the
(111) plane and is obviously of unknown origin, pointing to new physics in
transport properties of topological insulators.Comment: 4 pages, 5 figures, revised version with improved data and analysi
Self-Consistent Electron Subbands of Gaas/Algaas Heterostructure in Magnetic Fields Parallel to the Interface
The effect of strong magnetic fields parallel to GaAs/AlGaAs interface on the
subband structure of a 2D electron layer is ivestigated theoretically. The
system with two levels occupied in zero magnetic field is considered and the
magnetic field induced depletion of the second subband is studied. The
confining potential and the electron dispersion relations are calculated
self-consistently, the electron- electron interaction is taken into account in
the Hartree approximation.Comment: written in LaTeX, 8 pages, 4 figs. available on request from
[email protected]
- …
