4,790 research outputs found

    Generalized Fock spaces and the Stirling numbers

    Get PDF
    The Bargmann-Fock-Segal space plays an important role in mathematical physics, and has been extended into a number of directions. In the present paper we imbed this space into a Gelfand triple. The spaces forming the Fr\'echet part (i.e. the space of test functions) of the triple are characterized both in a geometric way and in terms of the adjoint of multiplication by the complex variable, using the Stirling numbers of the second kind. The dual of the space of test functions has a topological algebra structure, of the kind introduced and studied by the first named author and G. Salomon.Comment: revised versio

    Government-Industry Cooperative Fisheries Research in the North Pacific under the MSFCMA

    Get PDF
    The National Marine Fisheries Service’s Alaska Fisheries Science Center (AFSC) has a long and successful history of conducting research in cooperation with the fishing industry. Many of the AFSC’s annual resource assessment surveys are carried out aboard chartered commercial vessels and the skill and experience of captains and crew are integral to the success of this work. Fishing companies have been contracted to provide vessels and expertise for many different types of research, including testing and evaluation of survey and commercial fishing gear and development of improved methods for estimating commercial catch quantity and composition. AFSC scientists have also participated in a number of industry-initiated research projects including development of selective fishing gears for bycatch reduction and evaluating and improving observer catch composition sampling. In this paper, we describe the legal and regulatory provisions for these types of cooperative work and present examples to illustrate the process and identify the requirements for successful cooperative research

    Statistical Mechanics of Steiner trees

    Get PDF
    The Minimum Weight Steiner Tree (MST) is an important combinatorial optimization problem over networks that has applications in a wide range of fields. Here we discuss a general technique to translate the imposed global connectivity constrain into many local ones that can be analyzed with cavity equation techniques. This approach leads to a new optimization algorithm for MST and allows to analyze the statistical mechanics properties of MST on random graphs of various types

    Quantum symmetries and exceptional collections

    Full text link
    We study the interplay between discrete quantum symmetries at certain points in the moduli space of Calabi-Yau compactifications, and the associated identities that the geometric realization of D-brane monodromies must satisfy. We show that in a wide class of examples, both local and compact, the monodromy identities in question always follow from a single mathematical statement. One of the simplest examples is the Z_5 symmetry at the Gepner point of the quintic, and the associated D-brane monodromy identity

    Longest Common Extensions in Sublinear Space

    Get PDF
    The longest common extension problem (LCE problem) is to construct a data structure for an input string TT of length nn that supports LCE(i,j)(i,j) queries. Such a query returns the length of the longest common prefix of the suffixes starting at positions ii and jj in TT. This classic problem has a well-known solution that uses O(n)O(n) space and O(1)O(1) query time. In this paper we show that for any trade-off parameter 1τn1 \leq \tau \leq n, the problem can be solved in O(nτ)O(\frac{n}{\tau}) space and O(τ)O(\tau) query time. This significantly improves the previously best known time-space trade-offs, and almost matches the best known time-space product lower bound.Comment: An extended abstract of this paper has been accepted to CPM 201

    Percolation of satisfiability in finite dimensions

    Get PDF
    The satisfiability and optimization of finite-dimensional Boolean formulas are studied using percolation theory, rare region arguments, and boundary effects. In contrast with mean-field results, there is no satisfiability transition, though there is a logical connectivity transition. In part of the disconnected phase, rare regions lead to a divergent running time for optimization algorithms. The thermodynamic ground state for the NP-hard two-dimensional maximum-satisfiability problem is typically unique. These results have implications for the computational study of disordered materials.Comment: 4 pages, 4 fig

    Locally Optimal Load Balancing

    Full text link
    This work studies distributed algorithms for locally optimal load-balancing: We are given a graph of maximum degree Δ\Delta, and each node has up to LL units of load. The task is to distribute the load more evenly so that the loads of adjacent nodes differ by at most 11. If the graph is a path (Δ=2\Delta = 2), it is easy to solve the fractional version of the problem in O(L)O(L) communication rounds, independently of the number of nodes. We show that this is tight, and we show that it is possible to solve also the discrete version of the problem in O(L)O(L) rounds in paths. For the general case (Δ>2\Delta > 2), we show that fractional load balancing can be solved in poly(L,Δ)\operatorname{poly}(L,\Delta) rounds and discrete load balancing in f(L,Δ)f(L,\Delta) rounds for some function ff, independently of the number of nodes.Comment: 19 pages, 11 figure

    A Full Characterization of Quantum Advice

    Get PDF
    We prove the following surprising result: given any quantum state rho on n qubits, there exists a local Hamiltonian H on poly(n) qubits (e.g., a sum of two-qubit interactions), such that any ground state of H can be used to simulate rho on all quantum circuits of fixed polynomial size. In terms of complexity classes, this implies that BQP/qpoly is contained in QMA/poly, which supersedes the previous result of Aaronson that BQP/qpoly is contained in PP/poly. Indeed, we can exactly characterize quantum advice, as equivalent in power to untrusted quantum advice combined with trusted classical advice. Proving our main result requires combining a large number of previous tools -- including a result of Alon et al. on learning of real-valued concept classes, a result of Aaronson on the learnability of quantum states, and a result of Aharonov and Regev on "QMA+ super-verifiers" -- and also creating some new ones. The main new tool is a so-called majority-certificates lemma, which is closely related to boosting in machine learning, and which seems likely to find independent applications. In its simplest version, this lemma says the following. Given any set S of Boolean functions on n variables, any function f in S can be expressed as the pointwise majority of m=O(n) functions f1,...,fm in S, such that each fi is the unique function in S compatible with O(log|S|) input/output constraints.Comment: We fixed two significant issues: 1. The definition of YQP machines needed to be changed to preserve our results. The revised definition is more natural and has the same intuitive interpretation. 2. We needed properties of Local Hamiltonian reductions going beyond those proved in previous works (whose results we'd misstated). We now prove the needed properties. See p. 6 for more on both point

    Fluctuations in the Site Disordered Traveling Salesman Problem

    Full text link
    We extend a previous statistical mechanical treatment of the traveling salesman problem by defining a discrete "site disordered'' problem in which fluctuations about saddle points can be computed. The results clarify the basis of our original treatment, and illuminate but do not resolve the difficulties of taking the zero temperature limit to obtain minimal path lengths.Comment: 17 pages, 3 eps figures, revte

    Traveling-Wave Tubes

    Get PDF
    Contains reports on four research projects
    corecore