4,790 research outputs found
Generalized Fock spaces and the Stirling numbers
The Bargmann-Fock-Segal space plays an important role in mathematical
physics, and has been extended into a number of directions. In the present
paper we imbed this space into a Gelfand triple. The spaces forming the
Fr\'echet part (i.e. the space of test functions) of the triple are
characterized both in a geometric way and in terms of the adjoint of
multiplication by the complex variable, using the Stirling numbers of the
second kind. The dual of the space of test functions has a topological algebra
structure, of the kind introduced and studied by the first named author and G.
Salomon.Comment: revised versio
Government-Industry Cooperative Fisheries Research in the North Pacific under the MSFCMA
The National Marine Fisheries Service’s Alaska Fisheries Science Center (AFSC) has a long and successful history of conducting research in cooperation with the fishing industry. Many of the AFSC’s annual resource assessment surveys are carried out aboard chartered commercial vessels and the skill and experience of captains and crew are integral to the success of this work. Fishing companies have been contracted to provide vessels and expertise for many different types of research, including testing and evaluation of survey and commercial fishing gear and development of improved methods for estimating commercial catch quantity and composition. AFSC scientists have also participated in a number of industry-initiated research projects including development of selective fishing gears for bycatch reduction and evaluating and improving observer catch composition sampling. In this paper, we describe the legal and regulatory provisions for these types of cooperative work and present examples to illustrate the process and identify the requirements for successful cooperative research
Statistical Mechanics of Steiner trees
The Minimum Weight Steiner Tree (MST) is an important combinatorial
optimization problem over networks that has applications in a wide range of
fields. Here we discuss a general technique to translate the imposed global
connectivity constrain into many local ones that can be analyzed with cavity
equation techniques. This approach leads to a new optimization algorithm for
MST and allows to analyze the statistical mechanics properties of MST on random
graphs of various types
Quantum symmetries and exceptional collections
We study the interplay between discrete quantum symmetries at certain points
in the moduli space of Calabi-Yau compactifications, and the associated
identities that the geometric realization of D-brane monodromies must satisfy.
We show that in a wide class of examples, both local and compact, the monodromy
identities in question always follow from a single mathematical statement. One
of the simplest examples is the Z_5 symmetry at the Gepner point of the
quintic, and the associated D-brane monodromy identity
Longest Common Extensions in Sublinear Space
The longest common extension problem (LCE problem) is to construct a data
structure for an input string of length that supports LCE
queries. Such a query returns the length of the longest common prefix of the
suffixes starting at positions and in . This classic problem has a
well-known solution that uses space and query time. In this paper
we show that for any trade-off parameter , the problem can
be solved in space and query time. This
significantly improves the previously best known time-space trade-offs, and
almost matches the best known time-space product lower bound.Comment: An extended abstract of this paper has been accepted to CPM 201
Percolation of satisfiability in finite dimensions
The satisfiability and optimization of finite-dimensional Boolean formulas
are studied using percolation theory, rare region arguments, and boundary
effects. In contrast with mean-field results, there is no satisfiability
transition, though there is a logical connectivity transition. In part of the
disconnected phase, rare regions lead to a divergent running time for
optimization algorithms. The thermodynamic ground state for the NP-hard
two-dimensional maximum-satisfiability problem is typically unique. These
results have implications for the computational study of disordered materials.Comment: 4 pages, 4 fig
Locally Optimal Load Balancing
This work studies distributed algorithms for locally optimal load-balancing:
We are given a graph of maximum degree , and each node has up to
units of load. The task is to distribute the load more evenly so that the loads
of adjacent nodes differ by at most .
If the graph is a path (), it is easy to solve the fractional
version of the problem in communication rounds, independently of the
number of nodes. We show that this is tight, and we show that it is possible to
solve also the discrete version of the problem in rounds in paths.
For the general case (), we show that fractional load balancing
can be solved in rounds and discrete load
balancing in rounds for some function , independently of the
number of nodes.Comment: 19 pages, 11 figure
A Full Characterization of Quantum Advice
We prove the following surprising result: given any quantum state rho on n
qubits, there exists a local Hamiltonian H on poly(n) qubits (e.g., a sum of
two-qubit interactions), such that any ground state of H can be used to
simulate rho on all quantum circuits of fixed polynomial size. In terms of
complexity classes, this implies that BQP/qpoly is contained in QMA/poly, which
supersedes the previous result of Aaronson that BQP/qpoly is contained in
PP/poly. Indeed, we can exactly characterize quantum advice, as equivalent in
power to untrusted quantum advice combined with trusted classical advice.
Proving our main result requires combining a large number of previous tools --
including a result of Alon et al. on learning of real-valued concept classes, a
result of Aaronson on the learnability of quantum states, and a result of
Aharonov and Regev on "QMA+ super-verifiers" -- and also creating some new
ones. The main new tool is a so-called majority-certificates lemma, which is
closely related to boosting in machine learning, and which seems likely to find
independent applications. In its simplest version, this lemma says the
following. Given any set S of Boolean functions on n variables, any function f
in S can be expressed as the pointwise majority of m=O(n) functions f1,...,fm
in S, such that each fi is the unique function in S compatible with O(log|S|)
input/output constraints.Comment: We fixed two significant issues: 1. The definition of YQP machines
needed to be changed to preserve our results. The revised definition is more
natural and has the same intuitive interpretation. 2. We needed properties of
Local Hamiltonian reductions going beyond those proved in previous works
(whose results we'd misstated). We now prove the needed properties. See p. 6
for more on both point
Fluctuations in the Site Disordered Traveling Salesman Problem
We extend a previous statistical mechanical treatment of the traveling
salesman problem by defining a discrete "site disordered'' problem in which
fluctuations about saddle points can be computed. The results clarify the basis
of our original treatment, and illuminate but do not resolve the difficulties
of taking the zero temperature limit to obtain minimal path lengths.Comment: 17 pages, 3 eps figures, revte
- …
