32 research outputs found

    Dark matter and Higgs boson physics

    Full text link
    A vector-like colorless fermion doublet and a singlet added to the Standard Model allow a consistent interpretation of dark matter in terms of the lightest neutral particle, as they may help in obtaining successful gauge coupling unification. We analyze in detail the mass range of the lightest neutral particle below the W mass, i.e. in a range of the parameters where the physics of the Standard Model Higgs boson may be substantially affected either directly or indirectly.Comment: 17 pages, 7 figures. v3: published version (small corrections

    Thermal Axions: What’s next?

    Get PDF
    Scattering and decay processes of thermal bath particles in the early universe can dump relativistic axions in the primordial plasma. If produced with a significant abundance, their presence can leave observable signatures in cosmological observables probing both the early and the late universe. We focus on the QCD axion and present recent and significant improvements for the calculation of the axion production rate across the different energy scales during the expansion of the universe. We apply these rates to predict the abundance of produced axions and to derive the latest cosmological bounds on the axion mass and couplings

    Constraints on the excitations in the Strongly Coupled Standard Model

    Full text link
    The Strongly Coupled Standard Model predicts a rich spectrum of excited states at the Fermi scale. We study the first radial excitations of the vector bosons. The inclusion of these new states affects the low energy phenomenology of the model. We put constraints on the effective couplings by performing a global fit with the electroweak observables, and we find that the excitations have to be rather decoupled from the low-energy states.Comment: 23 pages, 6 figures, uses RevTeX

    Supergravity Computations without Gravity Complications

    Get PDF
    The conformal compensator formalism is a convenient and versatile representation of supergravity (SUGRA) obtained by gauge fixing conformal SUGRA. Unfortunately, practical calculations often require cumbersome manipulations of component field terms involving the full gravity multiplet. In this paper, we derive an alternative gauge fixing for conformal SUGRA which decouples these gravity complications from SUGRA computations. This yields a simplified tree-level action for the matter fields in SUGRA which can be expressed compactly in terms of superfields and a modified conformal compensator. Phenomenologically relevant quantities such as the scalar potential and fermion mass matrix are then straightforwardly obtained by expanding the action in superspace.Comment: 10 pages; v2: references update

    Transverse Momentum Broadening and the Jet Quenching Parameter, Redux

    Full text link
    We use Soft Collinear Effective Theory (SCET) to analyze the transverse momentum broadening, or diffusion in transverse momentum space, of an energetic parton propagating through quark-gluon plasma. Since we neglect the radiation of gluons from the energetic parton, we can only discuss momentum broadening, not parton energy loss. The interaction responsible for momentum broadening in the absence of radiation is that between the energetic (collinear) parton and the Glauber modes of the gluon fields in the medium. We derive the effective Lagrangian for this interaction, and we show that the probability for picking up transverse momentum k_\perp is given by the Fourier transform of the expectation value of two transversely separated light-like path-ordered Wilson lines. This yields a field theoretical definition of the jet quenching parameter \hat q, and shows that this can be interpreted as a diffusion constant. We close by revisiting the calculation of \hat q for the strongly coupled plasma of N=4 SYM theory, showing that previous calculations need some modifications that make them more straightforward and do not change the result.Comment: 18 pages, 7 figures; v2, minor revisions, references added; v3, version to appear in Phys. Rev. D: Feynman rules corrected, improved explanations of the gauge invariance of our calculation and of how the scaling of SCET operators differs from that in other contexts in the literature; no changes to any result

    The Spectrum of Goldstini and Modulini

    Get PDF
    When supersymmetry is broken in multiple sectors via independent dynamics, the theory furnishes a corresponding multiplicity of "goldstini" degrees of freedom which may play a substantial role in collider phenomenology and cosmology. In this paper, we explore the tree-level mass spectrum of goldstini arising from a general admixture of F-term, D-term, and almost no-scale supersymmetry breaking, employing non-linear superfields and a novel gauge fixing for supergravity discussed in a companion paper. In theories of F-term and D-term breaking, goldstini acquire a mass which is precisely twice the gravitino mass, while the inclusion of no-scale breaking renders one of these modes, the modulino, massless. We argue that the vanishing modulino mass can be explained in terms of an accidental and spontaneously broken "global" supersymmetry.Comment: 10 pages, 2 figures; v2: typo corrected, references updated; v3: version to appear in JHE

    The Two Faces of Anomaly Mediation

    Get PDF
    Anomaly mediation is a ubiquitous source of supersymmetry (SUSY) breaking which appears in almost every theory of supergravity. In this paper, we show that anomaly mediation really consists of two physically distinct phenomena, which we dub "gravitino mediation" and "Kahler mediation". Gravitino mediation arises from minimally uplifting SUSY anti-de Sitter (AdS) space to Minkowski space, generating soft masses proportional to the gravitino mass. Kahler mediation arises when visible sector fields have linear couplings to SUSY breaking in the Kahler potential, generating soft masses proportional to beta function coefficients. In the literature, these two phenomena are lumped together under the name "anomaly mediation", but here we demonstrate that they can be physically disentangled by measuring associated couplings to the goldstino. In particular, we use the example of gaugino soft masses to show that gravitino mediation generates soft masses without corresponding goldstino couplings. This result naively violates the goldstino equivalence theorem but is in fact necessary for supercurrent conservation in AdS space. Since gravitino mediation persists even when the visible sector is sequestered from SUSY breaking, we can use the absence of goldstino couplings as an unambiguous definition of sequestering.Comment: 21 pages, 1 table; v2, references added, extended discussion in introduction and appendix; v3, JHEP versio
    corecore