20 research outputs found

    WIPI1, BAG1 and PEX3 autophagy-related genes are relevant melanoma markers

    Get PDF
    ROS and oxidative stress may promote autophagy; on the other hand, autophagy may help reduce oxidative damages. According to the known interplay of ROS, autophagy, and melanoma onset, we hypothesized that autophagy-related genes (ARGs) may represent useful melanoma biomarkers. We therefore analyzed the gene and protein expression of 222 ARGs in human melanoma samples, from 5 independent expression databases (overall 572 patients). Gene expression was first evaluated in the GEO database. Forty-two genes showed extremely high ability to discriminate melanoma from nevi (63 samples) according to ROC (AUC ≥ 0.85) and Mann-Whitney (p < 0.0001) analyses. The 9 genes never related to melanoma before were then in silico validated in the IST online database. BAG1, CHMP2B, PEX3, and WIPI1 confirmed a strong differential gene expression, in 355 samples. A second-round validation performed on the Human Protein Atlas database showed strong differential protein expression for BAG1, PEX3, and WIPI1 in melanoma vs control samples, according to the image analysis of 80 human histological sections. WIPI1 gene expression also showed a significant prognostic value (p < 0.0001) according to 102 melanoma patients' survival data. We finally addressed in Oncomine database whether WIPI1 overexpression is melanoma-specific. Within more than 20 cancer types, the most relevant WIPI1 expression change (p = 0.00002; fold change = 3.1) was observed in melanoma. Molecular/functional relationships of the investigated molecules with melanoma and their molecular/functional network were analyzed via Chilibot software, STRING analysis, and gene ontology enrichment analysis. We conclude that WIPI1 (AUC = 0.99), BAG1 (AUC = 1), and PEX3 (AUC = 0.93) are relevant novel melanoma markers at both gene and protein levels

    Ion channel expression in human melanoma samples. in silico identification and experimental validation of molecular targets

    Get PDF
    Expression of 328 ion channel genes was investigated, by in silico analysis, in 170 human melanoma samples and controls. Ninety-one members of this gene-family (i.e., about 28%) show a significant (p 0.90 and p 90% in most cases). Such five genes (namely, SCNN1A, GJB3, KCNK7, GJB1, KCNN2) are novel potential melanoma markers or molecular targets, never previously related to melanoma. The “druggable genome” analysis was then carried out. Miconazole, an antifungal drug commonly used in clinics, is known to target KCNN2, the best candidate among the five identified genes. Miconazole was then tested in vitro in proliferation assays; it dose-dependently inhibited proliferation up to 90% and potently induced cell-death in A-375 and SKMEL-28 melanoma cells, while it showed no effect in control cells. Moreover, specific silencing of KCNN2 ion channel was achieved by siRNA transfection; under such condition miconazole strongly increases its anti-proliferative effect. In conclusion, the present study identified five ion channels that can potentially serve as sensitive and specific markers in human melanoma specimens and demonstrates that the antifungal drug miconazole, known to target one of the five identified ion channels, exerts strong and specific anti-melanoma effects in vitro

    Adhesion to carbon nanotube conductive scaffolds forces action-potential appearance in immature rat spinal neurons

    Get PDF
    In the last decade, carbon nanotube growth substrates have been used to investigate neurons and neuronal networks formation in vitro when guided by artificial nano-scaled cues. Besides, nanotube-based interfaces are being developed, such as prosthesis for monitoring brain activity. We recently described how carbon nanotube substrates alter the electrophysiological and synaptic responses of hippocampal neurons in culture. This observation highlighted the exceptional ability of this material in interfering with nerve tissue growth. Here we test the hypothesis that carbon nanotube scaffolds promote the development of immature neurons isolated from the neonatal rat spinal cord, and maintained in vitro. To address this issue we performed electrophysiological studies associated to gene expression analysis. Our results indicate that spinal neurons plated on electro-conductive carbon nanotubes show a facilitated development. Spinal neurons anticipate the expression of functional markers of maturation, such as the generation of voltage dependent currents or action potentials. These changes are accompanied by a selective modulation of gene expression, involving neuronal and non-neuronal components. Our microarray experiments suggest that carbon nanotube platforms trigger reparative activities involving microglia, in the absence of reactive gliosis. Hence, future tissue scaffolds blended with conductive nanotubes may be exploited to promote cell differentiation and reparative pathways in neural regeneration strategies

    Topical Steroids and Glaucoma Filtration Surgery Outcomes: An In Vivo Confocal Study of the Conjunctiva

    No full text
    (1) Background: The purpose of this study is to investigate the effects of topical steroids on conjunctiva in patients undergoing filtration surgery (FS) for glaucoma by using confocal microscopy (CM); (2) Methods: One hundred and four glaucomatous patients were randomized to fluorometholone or lubricants four weeks before FS. CM was performed before treatments and pre-operatively. Dendritic and goblet cell densities (DCD, GCD), stromal meshwork reflectivity (SMR), vascular tortuosity (VT), and intra-ocular pressure (IOP) were the main outcomes. By evaluating treatments and outcomes (12-month success/failure) as categorical variables, patients were grouped into Group 1, 2, 3, or 4 (success/failure with fluorometholone, or lubricants); (3) Results: Twelve-month IOP was reduced in Groups 1 and 3 (p p p p p = 0.004). There were no significant differences between the fluorometholone and lubricant groups for success percentages. The number of bleb management procedures and IOP lowering medications were lower in Group 1 compared to Groups 2–4 (p < 0.05); (4) Conclusions: Topical steroids mitigate conjunctival inflammation and lower the stromal density in patients undergoing FS. These modifications lead to less intensive post-operative management

    Liver transplantation for non-alcoholic fatty liver disease: indications and post-transplant management

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is currently the fastest growing indication to liver transplantation (LT) in Western Countries, both for end stage liver disease and hepatocellular carcinoma. NAFLD/non-alcoholic steatohepatitis (NASH) is often expression of a systemic metabolic syndrome; therefore, NAFLD/NASH patients require a multidisciplinary approach for a proper pre-surgical evaluation, which is important to achieve a post-transplant outcome comparable to that of other indications to LT. NAFLD/NASH patients are also at higher risk of post-transplant cardiovascular events, diabetes, dyslipidemia, obesity, renal impairment and recurrent NASH. Lifestyle modifications, included diet and physical activity, are key to improve survival and quality of life after transplantation. A tailored immunosuppressive regimen may be proposed in selected patients. Development of new drugs for the treatment of recurrent NASH is awaited

    Evolution of Liver Transplantation Indications: Expanding Horizons

    No full text
    Liver transplantation (LT) has significantly transformed the prognosis of patients with end-stage liver disease and hepatocellular carcinoma (HCC). The traditional epidemiology of liver diseases has undergone a remarkable shift in indications for LT, marked by a decline in viral hepatitis and an increase in metabolic dysfunction-associated steatotic liver disease (MASLD), along with expanded indications for HCC. Recent advancements in surgical techniques, organ preservation and post-transplant patients’ management have opened new possibilities for LT. Conditions that were historically considered absolute contraindications have emerged as potential new indications, demonstrating promising results in terms of patient survival. While these expanding indications provide newfound hope, the ethical dilemma of organ scarcity persists. Addressing this requires careful consideration and international collaboration to ensure equitable access to LT. Multidisciplinary approaches and ongoing research efforts are crucial to navigate the evolving landscape of LT. This review aims to offer a current overview of the primary emerging indications for LT, focusing on acute-on-chronic liver failure (ACLF), acute alcoholic hepatitis (AH), intrahepatic and perihilar cholangiocarcinoma (i- and p-CCA), colorectal liver metastasis (CRLM), and neuroendocrine tumor (NET) liver metastases
    corecore