648 research outputs found
Families with infants: a general approach to solve hard partition problems
We introduce a general approach for solving partition problems where the goal
is to represent a given set as a union (either disjoint or not) of subsets
satisfying certain properties. Many NP-hard problems can be naturally stated as
such partition problems. We show that if one can find a large enough system of
so-called families with infants for a given problem, then this problem can be
solved faster than by a straightforward algorithm. We use this approach to
improve known bounds for several NP-hard problems as well as to simplify the
proofs of several known results.
For the chromatic number problem we present an algorithm with
time and exponential space for graphs of average
degree . This improves the algorithm by Bj\"{o}rklund et al. [Theory Comput.
Syst. 2010] that works for graphs of bounded maximum (as opposed to average)
degree and closes an open problem stated by Cygan and Pilipczuk [ICALP 2013].
For the traveling salesman problem we give an algorithm working in
time and polynomial space for graphs of average
degree . The previously known results of this kind is a polyspace algorithm
by Bj\"{o}rklund et al. [ICALP 2008] for graphs of bounded maximum degree and
an exponential space algorithm for bounded average degree by Cygan and
Pilipczuk [ICALP 2013].
For counting perfect matching in graphs of average degree~ we present an
algorithm with running time and polynomial
space. Recent algorithms of this kind due to Cygan, Pilipczuk [ICALP 2013] and
Izumi, Wadayama [FOCS 2012] (for bipartite graphs only) use exponential space.Comment: 18 pages, a revised version of this paper is available at
http://arxiv.org/abs/1410.220
Assigning channels via the meet-in-the-middle approach
We study the complexity of the Channel Assignment problem. By applying the
meet-in-the-middle approach we get an algorithm for the -bounded Channel
Assignment (when the edge weights are bounded by ) running in time
. This is the first algorithm which breaks the
barrier. We extend this algorithm to the counting variant, at the
cost of slightly higher polynomial factor.
A major open problem asks whether Channel Assignment admits a -time
algorithm, for a constant independent of . We consider a similar
question for Generalized T-Coloring, a CSP problem that generalizes \CA. We
show that Generalized T-Coloring does not admit a
-time algorithm, where is the
size of the instance.Comment: SWAT 2014: 282-29
On Directed Feedback Vertex Set parameterized by treewidth
We study the Directed Feedback Vertex Set problem parameterized by the
treewidth of the input graph. We prove that unless the Exponential Time
Hypothesis fails, the problem cannot be solved in time on general directed graphs, where is the treewidth of
the underlying undirected graph. This is matched by a dynamic programming
algorithm with running time .
On the other hand, we show that if the input digraph is planar, then the
running time can be improved to .Comment: 20
New Dependencies of Hierarchies in Polynomial Optimization
We compare four key hierarchies for solving Constrained Polynomial
Optimization Problems (CPOP): Sum of Squares (SOS), Sum of Diagonally Dominant
Polynomials (SDSOS), Sum of Nonnegative Circuits (SONC), and the Sherali Adams
(SA) hierarchies. We prove a collection of dependencies among these hierarchies
both for general CPOPs and for optimization problems on the Boolean hypercube.
Key results include for the general case that the SONC and SOS hierarchy are
polynomially incomparable, while SDSOS is contained in SONC. A direct
consequence is the non-existence of a Putinar-like Positivstellensatz for
SDSOS. On the Boolean hypercube, we show as a main result that Schm\"udgen-like
versions of the hierarchies SDSOS*, SONC*, and SA* are polynomially equivalent.
Moreover, we show that SA* is contained in any Schm\"udgen-like hierarchy that
provides a O(n) degree bound.Comment: 26 pages, 4 figure
Relaxing the Irrevocability Requirement for Online Graph Algorithms
Online graph problems are considered in models where the irrevocability
requirement is relaxed. Motivated by practical examples where, for example,
there is a cost associated with building a facility and no extra cost
associated with doing it later, we consider the Late Accept model, where a
request can be accepted at a later point, but any acceptance is irrevocable.
Similarly, we also consider a Late Reject model, where an accepted request can
later be rejected, but any rejection is irrevocable (this is sometimes called
preemption). Finally, we consider the Late Accept/Reject model, where late
accepts and rejects are both allowed, but any late reject is irrevocable. For
Independent Set, the Late Accept/Reject model is necessary to obtain a constant
competitive ratio, but for Vertex Cover the Late Accept model is sufficient and
for Minimum Spanning Forest the Late Reject model is sufficient. The Matching
problem has a competitive ratio of 2, but in the Late Accept/Reject model, its
competitive ratio is 3/2
Fibre-optic delivery of time and frequency to VLBI station
The quality of Very Long Baseline Interferometry (VLBI) radio observations
predominantly relies on precise and ultra-stable time and frequency (T&F)
standards, usually hydrogen masers (HM), maintained locally at each VLBI
station. Here, we present an operational solution in which the VLBI
observations are routinely carried out without use of a local HM, but using
remote synchronization via a stabilized, long-distance fibre-optic link. The
T&F reference signals, traceable to international atomic timescale (TAI), are
delivered to the VLBI station from a dedicated timekeeping laboratory.
Moreover, we describe a proof-of-concept experiment where the VLBI station is
synchronized to a remote strontium optical lattice clock during the
observation.Comment: 8 pages, 8 figures, matches the version published in A&A, section
Astronomical instrumentatio
Parametrised Complexity of Model Checking and Satisfiability in Propositional Dependence Logic
In this paper, we initiate a systematic study of the parametrised complexity
in the field of Dependence Logics which finds its origin in the Dependence
Logic of V\"a\"an\"anen from 2007. We study a propositional variant of this
logic (PDL) and investigate a variety of parametrisations with respect to the
central decision problems. The model checking problem (MC) of PDL is
NP-complete. The subject of this research is to identify a list of
parametrisations (formula-size, treewidth, treedepth, team-size, number of
variables) under which MC becomes fixed-parameter tractable. Furthermore, we
show that the number of disjunctions or the arity of dependence atoms
(dep-arity) as a parameter both yield a paraNP-completeness result. Then, we
consider the satisfiability problem (SAT) showing a different picture: under
team-size, or dep-arity SAT is paraNP-complete whereas under all other
mentioned parameters the problem is in FPT. Finally, we introduce a variant of
the satisfiability problem, asking for teams of a given size, and show for this
problem an almost complete picture.Comment: Update includes refined result
Strontium optical lattice clocks for practical realization of the metre and secondary representation of the second
We present a system of two independent strontium optical lattice standards
probed with a single shared ultra-narrow laser. The absolute frequency of the
clocks can be verified by the use of Er:fiber optical frequency comb with the
GPS-disciplined Rb frequency standard. We report hertz-level spectroscopy of
the clock line and measurements of frequency stability of the two strontium
optical lattice clocks.Comment: This is an author-created, un-copyedited version of an article
accepted for publication in Meas. Sci. Technol. The publisher is not
responsible for any errors or omissions in this version of the manuscript or
any version derived from it. The Version of Record is available online at
doi:10.1088/0957-0233/26/7/07520
- …