3 research outputs found
Quintessential Kination and Cold Dark Matter Abundance
The generation of a kination-dominated phase by a quintessential exponential
model is investigated and the parameters of the model are restricted so that a
number of observational constraints (originating from nucleosynthesis, the
present acceleration of the universe and the dark-energy-density parameter) are
satisfied. The decoupling of a thermal cold dark matter particle during the
period of kination is analyzed, the relic density is calculated both
numerically and semi-analytically and the results are compared with each other.
It is argued that the enhancement, with respect to the standard paradigm, of
the cold dark matter abundance can be expressed as a function of the
quintessential density parameter at the onset of nucleosynthesis. We find that
values of the latter quantity close to its upper bound require the
thermal-averaged cross section times the velocity of the cold relic to be
almost three orders of magnitude larger than this needed in the standard
scenario so as compatibility with the cold dark matter constraint is achieved.Comment: Published versio
Nuclear Reaction Network for Primordial Nucleosynthesis: a detailed analysis of rates, uncertainties and light nuclei yields
We analyze in details the standard Primordial Nucleosynthesis scenario. In
particular we discuss the key theoretical issues which are involved in a
detailed prediction of light nuclide abundances, as the weak reaction rates,
neutrino decoupling and nuclear rate modeling. We also perform a new analysis
of available data on the main nuclear processes entering the nucleosynthesis
reaction network, with particular stress on their uncertainties as well as on
their role in determining the corresponding uncertainties on light nuclide
theoretical estimates. The current status of theoretical versus experimental
results for 2H, 3He, 4He and 7Li is then discussed using the determination of
the baryon density as obtained from Cosmic Microwave Background anisotropies.Comment: LaTeX, 83 pages, 30 .pdf figures. Some typos in the units of
R-functions in appendix D and relative plots fixe
Gravitational clustering of relic neutrinos and implications for their detection
We study the gravitational clustering of big bang relic neutrinos onto
existing cold dark matter (CDM) and baryonic structures within the flat
CDM model, using both numerical simulations and a semi-analytical
linear technique, with the aim of understanding the neutrinos' clustering
properties for direct detection purposes. In a comparative analysis, we find
that the linear technique systematically underestimates the amount of
clustering for a wide range of CDM halo and neutrino masses. This invalidates
earlier claims of the technique's applicability. We then compute the exact
phase space distribution of relic neutrinos in our neighbourhood at Earth, and
estimate the large scale neutrino density contrasts within the local
Greisen--Zatsepin--Kuzmin zone. With these findings, we discuss the
implications of gravitational neutrino clustering for scattering-based
detection methods, ranging from flux detection via Cavendish-type torsion
balances, to target detection using accelerator beams and cosmic rays. For
emission spectroscopy via resonant annihilation of extremely energetic cosmic
neutrinos on the relic neutrino background, we give new estimates for the
expected enhancement in the event rates in the direction of the Virgo cluster.Comment: 38 pages, 8 embedded figures, iopart.cls; v2: references added, minor
changes in text, to appear in JCA
