154 research outputs found

    Italian institutions between crisis and reform

    Get PDF
    Article about italian constitutional crisis and reform perspective

    Italian Constitutional Court says Berlusconi had to be loyal

    Get PDF
    Articolo sul conflitto di attribuzioni sollevato da Silvio Berlusconi in merito al "legittimo impedimento

    Radiomics in Cardiovascular Disease Imaging: from Pixels to the Heart of the Problem

    Get PDF
    Purpose of Review This review of the literature aims to present potential applications of radiomics in cardiovascular radiology and, in particular, in cardiac imaging. Recent Findings Radiomics and machine learning represent a technological innovation which may be used to extract and analyze quantitative features from medical images. They aid in detecting hidden pattern in medical data, possibly leading to new insights in pathophysiology of different medical conditions. In the recent literature, radiomics and machine learning have been investigated for numerous potential applications in cardiovascular imaging. They have been proposed to improve image acquisition and reconstruction, for anatomical structure automated segmentation or automated characterization of cardiologic diseases. Summary The number of applications for radiomics and machine learning is continuing to rise, even though methodological and implementation issues still limit their use in daily practice. In the long term, they may have a positive impact in patient management

    Artificial intelligence applied to neuroimaging data in Parkinsonian syndromes: Actuality and expectations

    Get PDF
    Idiopathic Parkinson's Disease (iPD) is a common motor neurodegenerative disorder. It affects more frequently the elderly population, causing a significant emotional burden both for the patient and caregivers, due to the disease-related onset of motor and cognitive disabilities. iPD's clinical hallmark is the onset of cardinal motor symptoms such as bradykinesia, rest tremor, rigidity, and postural instability. However, these symptoms appear when the neurodegenerative process is already in an advanced stage. Furthermore, the greatest challenge is to distinguish iPD from other similar neurodegenerative disorders, "atypical parkinsonisms", such as Multisystem Atrophy, Progressive Supranuclear Palsy and Cortical Basal Degeneration, since they share many phenotypic manifestations, especially in the early stages. The diagnosis of these neurodegenerative motor disorders is essentially clinical. Consequently, the diagnostic accuracy mainly depends on the professional knowledge and experience of the physician. Recent advances in artificial intelligence have made it possible to analyze the large amount of clinical and instrumental information in the medical field. The application machine learning algorithms to the analysis of neuroimaging data appear to be a promising tool for identifying microstructural alterations related to the pathological process in order to explain the onset of symptoms and the spread of the neurodegenerative process. In this context, the search for quantitative biomarkers capable of identifying parkinsonian patients in the prodromal phases of the disease, of correctly distinguishing them from atypical parkinsonisms and of predicting clinical evolution and response to therapy represent the main goal of most current clinical research studies. Our aim was to review the recent literature and describe the current knowledge about the contribution given by machine learning applications to research and clinical management of parkinsonian syndromes

    differential diagnosis of benign and malignant vertebral compression fractures using conventional and advanced mri techniques

    Get PDF
    Atraumatic vertebral compression fractures (VCFs) are commonly encountered in clinical practice and often represent a diagnostic challenge. MRI plays a major role in the differential diagnosis of benign and malignant VCFs, due to its high contrast resolution and the possibility to obtain quantitative and functional data with the employment of advanced sequences. Computer-aided diagnosis systems are also applied on MRI images for this purpose, showing promising results. In this setting, aim of this pictorial review is to elucidate the role of MRI in the differential diagnosis of VCFs with a specific focus on advanced and post-processing imaging techniques

    Oncologic Imaging and Radiomics: A Walkthrough Review of Methodological Challenges

    Get PDF
    Imaging plays a crucial role in the management of oncologic patients, from the initial diagnosis to staging and treatment response monitoring. Recently, it has been suggested that its importance could be further increased by accessing a new layer of previously hidden quantitative data at the pixel level. Using a multi-step process, radiomics extracts potential biomarkers from medical images that could power decision support tools. Despite the growing interest and rising number of research articles being published, radiomics is still far from fulfilling its promise of guiding oncologic imaging toward personalized medicine. This is, at least partly, due to the heterogeneous methodological quality in radiomic research, caused by the complexity of the analysis pipelines. In this review, we aim to disentangle this complexity with a stepwise approach. Specifically, we focus on challenges to face during image preprocessing and segmentation, how to handle imbalanced classes and avoid information leaks, as well as strategies for the proper validation of findings

    State of the Art in Artificial Intelligence and Radiomics in Hepatocellular Carcinoma

    Get PDF
    The most common liver malignancy is hepatocellular carcinoma (HCC), which is also associated with high mortality. Often HCC develops in a chronic liver disease setting, and early diagnosis as well as accurate screening of high-risk patients is crucial for appropriate and effective management of these patients. While imaging characteristics of HCC are well-defined in the diagnostic phase, challenging cases still occur, and current prognostic and predictive models are limited in their accuracy. Radiomics and machine learning (ML) offer new tools to address these issues and may lead to scientific breakthroughs with the potential to impact clinical practice and improve patient outcomes. In this review, we will present an overview of these technologies in the setting of HCC imaging across different modalities and a range of applications. These include lesion segmentation, diagnosis, prognostic modeling and prediction of treatment response. Finally, limitations preventing clinical application of radiomics and ML at the present time are discussed, together with necessary future developments to bring the field forward and outside of a purely academic endeavor

    Meningioma MRI radiomics and machine learning: systematic review, quality score assessment, and meta-analysis

    Get PDF
    Purpose To systematically review and evaluate the methodological quality of studies using radiomics for diagnostic and predictive purposes in patients with intracranial meningioma. To perform a meta-analysis of machine learning studies for the prediction of intracranial meningioma grading from pre-operative brain MRI. Methods Articles published from the year 2000 on radiomics and machine learning applications in brain imaging of meningioma patients were included. Their methodological quality was assessed by three readers with the radiomics quality score, using the intra-class correlation coefficient (ICC) to evaluate inter-reader reproducibility. A meta-analysis of machine learning studies for the preoperative evaluation of meningioma grading was performed and their risk of bias was assessed with the Quality Assessment of Diagnostic Accuracy Studies tool. Results In all, 23 studies were included in the systematic review, 8 of which were suitable for the meta-analysis. Total (possible range, −8 to 36) and percentage radiomics quality scores were respectively 6.96 ± 4.86 and 19 ± 13% with a moderate to good inter-reader reproducibility (ICC = 0.75, 95% confidence intervals, 95%CI = 0.54–0.88). The meta-analysis showed an overall AUC of 0.88 (95%CI = 0.84–0.93) with a standard error of 0.02. Conclusions Machine learning and radiomics have been proposed for multiple applications in the imaging of meningiomas, with promising results for preoperative lesion grading. However, future studies with adequate standardization and higher methodological quality are required prior to their introduction in clinical practice

    CT and MRI radiomics of bone and soft-tissue sarcomas: a systematic review of reproducibility and validation strategies

    Get PDF
    Feature reproducibility and model validation are two main challenges of radiomics. This study aims to systematically review radiomic feature reproducibility and predictive model validation strategies in studies dealing with CT and MRI radiomics of bone and soft-tissue sarcomas. The ultimate goal is to promote achieving a consensus on these aspects in radiomic workflows and facilitate clinical transferability

    Burning Fog: Cognitive Impairment in Burning Mouth Syndrome

    Get PDF
    Background: Due to its common association with chronic pain experience, cognitive impairment (CI) has never been evaluated in patients with burning mouth syndrome (BMS). The purpose of this study is to assess the prevalence of CI in patients with BMS and to evaluate its relationship with potential predictors such as pain, mood disorders, blood biomarkers, and white matter changes (WMCs). Methods: A case-control study was conducted by enrolling 40 patients with BMS and an equal number of healthy controls matched for age, gender, and education. Neurocognitive assessment [Mini Mental State Examination (MMSE), Digit Cancellation Test (DCT), the Forward and Backward Digit Span task (FDS and BDS), Corsi Block-Tapping Test (CB-TT), Rey Auditory Verbal Learning Test (RAVLT), Copying Geometric Drawings (CGD), Frontal Assessment Battery (FAB), and Trail Making A and B (TMT-A and TMT-B)], psychological assessment [Hamilton Rating Scale for Depression and Anxiety (HAM-D and HAM-A), Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS), and 36-Item Short Form Health Survey (SF-36)], and pain assessment [Visual Analogic Scale (VAS), Total Pain Rating index (T-PRI), Brief Pain Inventory (BPI), and Pain DETECT Questionnaire (PD-Q)] were performed. In addition, blood biomarkers and MRI of the brain were recorded for the detection of Age-Related WMCs (ARWMCs). Descriptive statistics, the Mann-Whitney U-test, the Pearson Chi-Squared test and Spearman's correlation analysis were used. Results: Patients with BMS had impairments in most cognitive domains compared with controls (p < 0.001**) except in RAVLT and CGD. The HAM-D, HAM-A, PSQI, ESS, SF-36, VAS, T-PRI, BPI and PD-Q scores were statistically different between BMS patients and controls (p < 0.001**) the WMCs frequency and ARWMC scores in the right temporal (RT) and left temporal (LT) lobe were higher in patients with BMS (p = 0.023*). Conclusions: Meanwhile, BMS is associated with a higher decline in cognitive functions, particularly attention, working memory, and executive functions, but other functions such as praxis-constructive skills and verbal memory are preserved. The early identification of CI and associated factors may help clinicians to identify patients at risk of developing time-based neurodegenerative disorders, such as Alzheimer's disease (AD) and vascular dementia (VD), for planning the early, comprehensive, and multidisciplinary assessment and treatment
    • …
    corecore