87 research outputs found

    Voltammetric study and electrochemical degradation of reactive dyes

    Get PDF
    The aim of this study was, in a first stage, to investigate the voltammetric behavior of two reactive dyes, C.I.Reactive Orange 16 and C.I.Reactive Blue 19. Cyclic voltammetry technique (CV), on a glassy carbon electrode, was used for this purpose in order to identify the electrochemical activity of the chromophore group in each case, in the present experimental conditions. A second part of the study was to investigate the electrochemical degradation of the dyes, in the presence of hydrogen peroxide and copper ions. The reaction between the two species leads to the generation of hydroxyl radicals, which causes the oxidation and degradation of the organic compounds. The efficiency of dye degradation and ecolorization were evaluated by color removal and COD values. Depending on electrolysis time, applied potential, hydrogen peroxide concentration and dye concentration, different stages of color removal were attained

    STAR FORMATION ACTIVITY IN A YOUNG GALAXY CLUSTER AT Z=0.866

    Get PDF
    The galaxy cluster RX J1257+4738 at z = 0.866 is one of the highest redshift clusters with a richness of multi-wavelength data, and is thus a good target to study the star formation-density relation at early epochs. Using a sample of spectroscopically confirmed cluster members, we derive the star-formation rates (SFRs) of our galaxies using two methods: (1) the relation between SFR and total infrared luminosity extrapolated from the observed Spitzer Multiband Imaging Photometer for Spitzer 24 ÎŒm imaging data; and (2) spectral energy distribution fitting using the MAGPHYS code, including eight different bands. We show that, for this cluster, the SFR-density relation is very weak and seems to be dominated by the two central galaxies and the SFR presents a mild dependence on stellar mass, with more massive galaxies having higher SFR. However, the specific SFR (SSFR) decreases with stellar mass, meaning that more massive galaxies are forming fewer stars per unit of mass, and thus suggesting that the increase in star-forming members is driven by cluster assembly and infall. If the environment is somehow driving the star formation, one would expect a relation between the SSFR and the cluster centric distance, but that is not the case. A possible scenario to explain this lack of correlation is the contamination by infalling galaxies in the inner part of the cluster, which may be on their initial pass through the cluster center. As these galaxies have higher SFRs for their stellar mass, they enhance the mean SSFR in the center of the cluste

    Diabetic ketoacidosis in pregnancy

    Get PDF
    Diabetic ketoacidosis in pregnancy is a rare but potential life-threatening condition for the mother and the fetus. It tends to occur latter in pregnancy and is more common in patients with pregestational diabetes. Obstetricians should be aware of the events that can trigger diabetic ketoacidosis in pregnancy. Prompt recognition and aggressive treatment of this condition are essential in order to reduce perinatal mortality and morbidity. The authors present a case of a pregnant woman with type 1 diabetes with a poor surveillance of pregnancy and noncompliance to treatment that develops severe diabetic ketoacidosis at 34 weeks of gestation

    Testing star formation laws in a starburst galaxy at redshift 3 resolved with ALMA

    Get PDF
    Using high-resolution (sub-kiloparsec scale) data obtained by ALMA, we analyse the star formation rate (SFR), gas content, and kinematics in SDP 81, a gravitationally lensed starburst galaxy at redshift 3. We estimate the SFR surface density (ÎŁSFR) in the brightest clump of this galaxy to be 357+135−85M⊙yr−1kpc−2, over an area of 0.07 ± 0.02 kpc2. Using the intensity-weighted velocity of CO (5–4), we measure the turbulent velocity dispersion in the plane of the sky and find σv, turb = 37 ± 5 km s−1 for the clump, in good agreement with previous estimates along the line of sight. Our measurements of the gas surface density, freefall time, and turbulent Mach number allow us to compare the theoretical SFR from various star formation models with that observed, revealing that the role of turbulence is crucial to explaining the observed SFR in this clump. While the Kennicutt–Schmidt (KS) relation predicts an SFR surface density of ÎŁSFR, KS = 52 ± 17 M⊙ yr−1 kpc−2, the single-freefall model by Krumholz, Dekel, and McKee (KDM) predicts ÎŁSFR, KDM = 106 ± 37 M⊙ yr−1 kpc−2. In contrast, the multifreefall (turbulence) model by Salim, Federrath, and Kewley (SFK) gives ÎŁSFR,SFK=491+139−194M⊙yr−1kpc−2. Although the SFK relation overestimates the SFR in this clump (possibly due to the negligence of magnetic fields), it provides the best prediction among the available models. Finally, we compare the star formation and gas properties of this galaxy to local star-forming regions and find that the SFK relation provides the best estimates of SFR in both local and high-redshift galaxies.PS acknowledges travel support from the International Programmes and Collaboration Division, Birla Institute of Technology and Science, Pilani, India.5 CF acknowledges funding provided by the Australian Research Council’s Discovery Projects (grants DP150104329 and DP170100603), the Australian National University Futures Scheme, and the Australia-Germany Joint Research Cooperation Scheme [Universities Australia-German Academic Exchange Service (DAAD)]. EdC gratefully acknowledges the Australian Research Council for funding support as the recipient of a Future Fellowship (FT150100079). SD is a Rutherford Fellow supported by the UK Science and Technology Facilities Council

    Herschel observations of Hickson compact groups of galaxies: Unveiling the properties of cold dust

    Get PDF
    We present a Herschel far-infrared and sub-millimetre (sub-mm) study of a sample of 120 galaxies in 28 Hickson compact groups (HCGs). Fitting their UV to sub-mm spectral energy distributions with the model of da Cunha et al. (2008), we accurately estimate the dust masses, luminosities, and temperatures of the individual galaxies. We find that nearly half of the late-type galaxies in dynamically “old” groups, those with more than 25% of early-type members and redder UV-optical colours, also have significantly lower dustto-stellar mass ratios compared to those of actively star-forming galaxies of the same mass found both in HCGs and in the field. Examining their dust-to-gas mass ratios, we conclude that dust was stripped out of these systems as a result of the gravitational and hydrodynamic interactions, experienced owing to previous encounters with other group members. About 40% of the early-type galaxies (mostly lenticulars), in dynamically “old” groups, display dust properties similar to those of the UV-optical red late-type galaxies. Given their stellar masses, star formation rates, and UV-optical colours, we suggest that red late-type and dusty lenticular galaxies represent transition populations between blue star-forming disk galaxies and quiescent early-type ellipticals. On the other hand, both the complete absence of any correlation between the dust and stellar masses of the dusty ellipticals and their enhanced star formation activity, suggest the increase in their gas and dust content due to accretion and merging. Our deep Herschel observations also allow us to detect the presence of diffuse cold intragroup dust in 4 HCGs. We also find that the fraction of 250 ÎŒm emission that is located outside of the main bodies of both the red late-type galaxies and the dusty lenticulars is 15−20% of their integrated emission at this band. All these findings are consistent with an evolutionary scenario in which gas dissipation, shocks, and turbulence, in addition to tidal interactions, shape the evolution of galaxies in compact groups

    Physical properties and evolution of (Sub-)millimeter selected galaxies in the galaxy formation simulation Shark

    Full text link
    We thoroughly explore the properties of (sub)-millimeter (mm) selected galaxies (SMGs) in the Shark semi-analytic model of galaxy formation. Compared to observations, the predicted number counts at wavelengths (lambda) 0.6-2mm and redshift distributions at 0.1-2mm, agree well. At the bright end (>1mJy), Shark galaxies are a mix of mergers and disk instabilities. These galaxies display a stacked FUV-to-FIR spectrum that agrees well with observations. We predict that current optical/NIR surveys are deep enough to detect bright (>1mJy) lambda=0.85-2mm-selected galaxies at z<5, but too shallow to detect counterparts at higher redshift. A James Webb Space Telescope 10,000s survey should detect all counterparts for galaxies with S0.85mm>0.01S_{\rm 0.85mm}>0.01mJy. We predict SMG's disks contribute significantly (negligibly) to the rest-frame UV (IR). We investigate the 01mJy lambda=0.85-2mm-selected galaxies finding their: (i) stellar masses are >1010.2M⊙>10^{10.2}M_{\odot}, with the 2mm ones tracing the most massive galaxies (>1011M⊙>10^{11}M_{\odot}); (ii) specific star formation rates (SFR) are mildly (~3-10x) above the main sequence (MS); (iii) host halo masses are ≳1012.3M⊙\gtrsim 10^{12.3}M_{\odot}, with 2mm galaxies tracing the most massive halos (proto-clusters); (iv) SMGs have lower dust masses (≈108M⊙\approx 10^{8}M_{\odot}), higher dust temperatures (≈40−45\approx 40-45K) and higher rest-frame V-band attenuation (>1.5) than MS galaxies; (v) sizes decrease with redshift, from 4kpc at z=1 to <1kpc at z=4; (vi) the Carbon Monoxide line spectra of S0.85mm>1S_{\rm 0.85mm}>1mJy sources peak at 4->3. Finally, we study the contribution of SMGs to the molecular gas and cosmic SFR density at 01mJy sources make a negligible contribution at z>3 and z>5, respectively, suggesting current observations have unveiled the majority of the star formation at 0<z<10.Comment: Accepted for publication in MNRAS. 28 pages, 22 of main text and figure

    GAMA/H-ATLAS: Common star formation rate indicators and their dependence on galaxy physical parameters

    Get PDF
    We compare common star formation rate (SFR) indicators in the local Universe in the Galaxy and Mass Assembly (GAMA) equatorial fields (∌160 deg2), using ultraviolet (UV) photometry from GALEX, far-infrared and sub-millimetre (sub-mm) photometry from Herschel Astrophysical Terahertz Large Area Survey, and Hα spectroscopy from the GAMA survey. With a high-quality sample of 745 galaxies (median redshift 〈z〉 = 0.08), we consider three SFR tracers: UV luminosity corrected for dust attenuation using the UV spectral slope ÎČ (SFRUV, corr), Hα line luminosity corrected for dust using the Balmer decrement (BD) (SFRH α, corr), and the combination of UV and infrared (IR) emission (SFRUV + IR). We demonstrate that SFRUV, corr can be reconciled with the other two tracers after applying attenuation corrections by calibrating Infrared excess (IRX; i.e. the IR to UV luminosity ratio) and attenuation in the Hα (derived from BD) against ÎČ. However, ÎČ, on its own, is very unlikely to be a reliable attenuation indicator. We find that attenuation correction factors depend on parameters such as stellar mass (M*), z and dust temperature (Tdust), but not on Hα equivalent width or SĂ©rsic index. Due to the large scatter in the IRX versus ÎČ correlation, when compared to SFRUV + IR, the ÎČ-corrected SFRUV, corr exhibits systematic deviations as a function of IRX, BD and Tdust

    Development of photocatalytic 3D-Printed cementitious mortars: influence of the curing, spraying time gaps and TiO2 coating rates

    Get PDF
    This work evaluated the photocatalytic activity of 3D-printed cementitious mortar specimens functionalized with TiO2 nanoparticles to obtain a multifunctional and smart concrete. This research aims to assess the influence of different parameters related to the functionalization process such as adsorption, coating time gaps, and coating rates on the degradation efficiency of the functionalized cementitious specimens. Each specimen was evaluated under the degradation of Rhodamine B (RhB) in an aqueous solution using a sun-light simulation. The obtained results showed a decrease in adsorption (under dark condition) with increasing the sample curing age. The highest photocatalytic efficiency was observed for coated samples aged 7 days. By increasing the coating rates, the photocatalytic efficiency is enhanced. Nonetheless, regardless of the coating rates, all the specimens showed an increase in photocatalytic efficiency for longer time periods of light exposition, i.e., after 8 h of irradiationThis work was partly financed by FCT/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020. The authors acknowledge the support of the DST group construction company for funding the project Chair dst/IB-S: Smart Systems for Construction. The first two authors would like to acknowledge the PhD grants SFRH/BD/143636/2019 and SFRH/BD/137421/2018 provided by the Portuguese Foundation for Science and Technology (FCT). Additionally, the authors would like to acknowledge FCT for the financing this research work by the project NanoAir PTDC/FIS-MAC/6606/2020 and the Strategic Fundings UIDB/04650/2020-2023 and UIDB/04029/202

    Photocatalysis of functionalised 3D printed cementitious materials

    Get PDF
    The main objective of this study was to evaluate the photocatalytic behaviour of 3D printed cementitious mortars that were functionalised with TiO2 nanoparticles. This study is one of the few available regarding functionalisation of 3D concrete printing (3DCP) with photocatalytic properties. Despite the fact 3DCP research is swiftly growing, it is still necessary further investigation to fully understand these materials’ physicochemical and mechanical properties, which will influence the functionalised properties of the composite. Due to the freeform nature of the 3DCP there are no moulds, therefore the functionalisation through coating can be performed in a much earlier stage than in conventional moulded concrete. The developed smart 3D printed concrete could promote the photodegradation of pollutants for self-cleaning and air purification. In particular, this study investigated the effect of two parameters on photocatalytic behaviour: light power intensity and the coating rate of nano-TiO2 particles. Surface coating was adopted as the functionalisation method, and the Rhodamine B dye degradation efficiency was used as an indicator to evaluate the photocatalytic behaviour. Additionally, the surface roughness and microstructure of the 3D printed cementitious mortar specimens were assessed to distinguish between the reference and TiO2 coated series. Scanning electron microscopy (SEM), X-ray Energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) crystallography were carried out as three techniques to evaluate the morphology, composition, and microstructure of the specimens, respectively. The results indicated successful activation of catalyst particles under illumination, where higher light power intensity increased the degradation efficiency. Furthermore, dye degradation efficiency increased with increasing coating rates of nano-TiO2 particles on the surface of the specimens. The roughness of the 3D printed specimens’ surface was sufficient for settling the nano-TiO2 particles. Finally, microscopy results confirmed the presence and suitable distribution of the nano-TiO2 particles on the surface of the coated specimens.Support SECIL, SIKA, ELKEM and UNIBETAO, which graciously provided the required materials for printing the cementitious specimensThis work was partly financed by Fundaç˜ao para a Ciˆencia e a Tecnologia (FCT)/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020. The authors acknowledge the support of DST group construction company for funding the project Chair dst/IB-S: Smart Systems for Construction. The first two authors would like to acknowledge the PhD grants SFRH/BD/143636/2019 and SFRH/BD/137421/2018 provided by the Portuguese Foundation for Science and Technology (FCT). Additionally, the authors would like to acknowledge FCT for the financing this research work by the project NanoAir PTDC/FIS-MAC/6606/2020 and the Strategic Funding UIDB/04650/ 2020–2023
    • 

    corecore