48,741 research outputs found
Maximum likelihood based estimation of frequency and phase offset in DCT OFDM systems under non-circular transmissions: algorithms, analysis and comparisons
Recently, the advantages of the discrete cosine transform (DCT) based orthogonal frequency-division multiplexing (OFDM) have come to the light. We thus consider DCT- OFDM with non-circular transmission (our results cover circular transmission as well) and present two blind joint maximum- likelihood frequency offset and phase offset estimators. Both our theoretical analysis and numerical comparisons reveal new advantages of DCT-OFDM over the traditional discrete Fourier transform (DFT) based OFDM. These advantages, as well as those already uncovered in the early works on DCT-OFDM, support the belief that DCT-OFDM is a promising multi-carrier modulation scheme
Opaque Service Virtualisation: A Practical Tool for Emulating Endpoint Systems
Large enterprise software systems make many complex interactions with other
services in their environment. Developing and testing for production-like
conditions is therefore a very challenging task. Current approaches include
emulation of dependent services using either explicit modelling or
record-and-replay approaches. Models require deep knowledge of the target
services while record-and-replay is limited in accuracy. Both face
developmental and scaling issues. We present a new technique that improves the
accuracy of record-and-replay approaches, without requiring prior knowledge of
the service protocols. The approach uses Multiple Sequence Alignment to derive
message prototypes from recorded system interactions and a scheme to match
incoming request messages against prototypes to generate response messages. We
use a modified Needleman-Wunsch algorithm for distance calculation during
message matching. Our approach has shown greater than 99% accuracy for four
evaluated enterprise system messaging protocols. The approach has been
successfully integrated into the CA Service Virtualization commercial product
to complement its existing techniques.Comment: In Proceedings of the 38th International Conference on Software
Engineering Companion (pp. 202-211). arXiv admin note: text overlap with
arXiv:1510.0142
Gluon GPDs and Exclusive Photoproduction of a Quarkonium in Forward Region
Forward photoproduction of can be used to extract Generalized Parton
Distributions(GPD's) of gluons. We analyze the process at twist-3 level and
study relevant classifications of twist-3 gluon GPD's. At leading power or
twist-2 level the produced is transversely polarized. We find that at
twist-3 the produced is longitudinally polarized. Our study shows that
in high energy limit the twist-3 amplitude is only suppressed by the inverse
power of the heavy quark mass relatively to the twist-2 amplitude. This
indicates that the power correction to the cross-section of unpolarized
can have a sizeable effect. We have also derived the amplitude of the
production of at twist-3, but the result contains end-point
singularities. The production of other quarkonia has been briefly discussed.Comment: Discussions of results are adde
Topology of Entanglement in Multipartite States with Translational Invariance
The topology of entanglement in multipartite states with translational
invariance is discussed in this article. Two global features are foundby which
one can distinguish distinct states. These are the cyclic unit and the
quantised geometric phase. Furthermore the topology is indicated by the
fractional spin. Finally a scheme is presented for preparation of these types
of states in spin chain systems, in which the degeneracy of the energy levels
characterises the robustness of the states with translational invariance.Comment: major revision. accepted by EPJ
Determination of the Sign of g factors for Conduction Electrons Using Time-resolved Kerr Rotation
The knowledge of electron g factor is essential for spin manipulation in the
field of spintronics and quantum computing. While there exist technical
difficulties in determining the sign of g factor in semiconductors by the
established magneto-optical spectroscopic methods. We develop a time resolved
Kerr rotation technique to precisely measure the sign and the amplitude of
electron g factor in semiconductors
Terminal-Set-Enhanced Community Detection in Social Networks
Community detection aims to reveal the community structure in a social
network, which is one of the fundamental problems. In this paper we investigate
the community detection problem based on the concept of terminal set. A
terminal set is a group of users within which any two users belong to different
communities. Although the community detection is hard in general, the terminal
set can be very helpful in designing effective community detection algorithms.
We first present a 2-approximation algorithm running in polynomial time for the
original community detection problem. In the other issue, in order to better
support real applications we further consider the case when extra restrictions
are imposed on feasible partitions. For such customized community detection
problems, we provide two randomized algorithms which are able to find the
optimal partition with a high probability. Demonstrated by the experiments
performed on benchmark networks the proposed algorithms are able to produce
high-quality communities.Comment: INFOCOM 201
Spectroscopic signatures of the Larkin-Ovchinnikov state in the conductance characteristics of a normal-metal/superconductor junction
Using a discrete-lattice approach, we calculate the conductance spectra
between a normal metal and an s-wave Larkin-Ovchinnikov (LO) superconductor,
with the junction interface oriented {\em along} the direction of the
order-parameter (OP) modulation. The OP sign reversal across one single nodal
line can induce a sizable number of zero-energy Andreev bound states around the
nodal line, and a hybridized midgap-states band is formed amid a
momentum-dependent gap as a result of the periodic array of nodal lines in the
LO state. This band-in-gap structure and its anisotropic properties give rise
to distinctive features in both the point-contact and tunneling spectra as
compared with the BCS and Fulde-Ferrell cases. These spectroscopic features can
serve as distinguishing signatures of the LO state.Comment: 8 pages, 5 figures; version as publishe
- …
