160 research outputs found
A Case Study on Foamy Oil Characteristics of the Orinoco Belt, Venezuela
With a current recovery of less than 11%, the Orinoco Belt in Venezuela still contains potentially more than 1.3 trillion barrels of reserves of “three highs, one low” oil at a depth of 100 to 1500 m. 5 joint projects and one project of Petroleos de Venezuela SA are making plans to improve oil recovery in the area. So it is important for them to have a thorough knowledge of foamy oil characteristics. This reservoir has a peculiar behavior called as a foamy phenomenon. In order to characterize the properties of the foamy oil, this paper discussed unconventional test methodology and the detailed suite of laboratory procedures including PVT and pressure depletion tests used to examine the Orinoco heavy oil. The results showed substantial differences in characteristics of foamy oil and conventional oil studied, not only in terms of PVT behavior but also in terms of the production performance during pressure depletion tests. The foamy oil compressibility was between 10-120×10-4 mPa-1, which was obviously higher than that of conventional oil. Differential liberation experiments of the oil, with obvious high formation volume factor, stable GOR, and low density showed a strong tendency to foam below the bubble point. Other notable observations were that more efficient oil recovery was achieved at high depletion rates while less free gas was produced.Key words: Foamy oil; Unconventional tests; The Orinoco Belt; PVT; Pressure depletion test
Parallel Computing for LURR of Earthquake Prediction
The LURR theory is a new approach for earthquake prediction, which achieves a good result within China mainland and some regions in America, Japan, and Australia. However, the expansion of the prediction region leads to the refinement of its longitude and latitude and the increase of the time period. This requires more and more computations and volume of data reaching the order of GB, which will be very difficult for a single CPU. In this paper, adopting the technology of domain decomposition and parallelizing using MPI, we developed a new parallel tempospatial scanning program
Flower-Like MoSe2/MoO2 Composite with High Capacity and Long-Term Stability for Lithium-Ion Battery
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780565/A simple method is developed for the preparation of MoSe2/MoO2 composite with a flower-like structure for high-performance lithium-ion batteries (LIBs). MoSe2 could lead to fast and facile movement of Li+ due to its larger interlayer spacing. Meanwhile, MoSe2 could protect the lamellar structure of MoSe2 from being destroyed in the charging/discharging processes to maintain the required active surface to electrolytes. In addition, the flower-like structure of the composite could effectively alleviate the volume expansion during charging/discharging. As LIBs are anode material, MoSe2/MoSe2 composite demonstrates an excellent specific discharge capacity of 1042 mAh g-1 after 100 cycles at 0.1 A g-1, which is attributed to the synergistic effects of MoSe2 and MoSe2 in the composite
Advances in PNP-ligated rare-earth-metal complexes: Reactivity and catalytic performances
Due to the large ionic radius and high electro-positivity nature, rare earth metal complexes are difficult to stabilize and undergo pathways like ligand redistribution and intramolecular C-H activation. To solve such problems and retain reactive versatility, rare earth complexes supported by a variety of tridentate PNP pincer ligands have been explored. Such complexes can serve as perfect precursors for preparing ultra-active rare earth species containing two metal-carbon bands, let alone Ln=N and Ln=P multiple bonds. In addition, the combined stability and activity of the cation rare earth mediates made them the best catalysts for the polymerization of olefins and other non-polar hydrocarbon monomers, especially conjugated dienes. The practical utilization of rare earth metal catalysts for new materials production have also extensively explored by experts from the academic and industries
HybPSF: Hybrid PSF reconstruction for the observed JWST NIRCam image
The James Webb Space Telescope (JWST) ushers in a new era of astronomical
observation and discovery, offering unprecedented precision in a variety of
measurements such as photometry, astrometry, morphology, and shear measurement.
Accurate point spread function (PSF) models are crucial for many of these
measurements. In this paper, we introduce a hybrid PSF construction method
called HybPSF for JWST NIRCam imaging data. HybPSF combines the WebbPSF
software, which simulates the PSF for JWST, with observed data to produce more
accurate and reliable PSF models. We apply this method to the SMACS J0723
imaging data and construct supplementary structures from residuals obtained by
subtracting the WebbPSF PSF model from the data. Our results show that HybPSF
significantly reduces discrepancies between the PSF model and the data compared
to WebbPSF. Specifically, the PSF shape parameter ellipticity and size
comparisons indicate that HybPSF improves precision by a factor of
approximately 10 for \$R^2\$ and \$50\%\$ for \$e\$. This improvement has
important implications for astronomical measurements using JWST NIRCam imaging
data
Full-sky ray-tracing simulation of weak lensing using ELUCID simulations: exploring galaxy intrinsic alignment and cosmic shear correlations
The intrinsic alignment of galaxies is an important systematic effect in
weak-lensing surveys, which can affect the derived cosmological parameters. One
direct way to distinguish different alignment models and quantify their effects
on the measurement is to produce mocked weak-lensing surveys. In this work, we
use full-sky ray-tracing technique to produce mock images of galaxies from the
ELUCID -body simulation run with the WMAP9 cosmology. In our model we assume
that the shape of central elliptical galaxy follows that of the dark matter
halo, and spiral galaxy follows the halo spin. Using the mocked galaxy images,
a combination of galaxy intrinsic shape and the gravitational shear, we compare
the predicted tomographic shear correlations to the results of KiDS and DLS. It
is found that our predictions stay between the KiDS and DLS results. We rule
out a model in which the satellite galaxies are radially aligned with the
center galaxy, otherwise the shear-correlations on small scales are too high.
Most important, we find that although the intrinsic alignment of spiral
galaxies is very weak, they induce a positive correlation between the
gravitational shear signal and the intrinsic galaxy orientation (GI). This is
because the spiral galaxy is tangentially aligned with the nearby large-scale
overdensity, contrary to the radial alignment of elliptical galaxy. Our results
explain the origin of detected positive GI term from the weak-lensing surveys.
We conclude that in future analysis, the GI model must include the dependence
on galaxy types in more detail.Comment: 23 pages, 13 figures, published in ApJ. Our mock galaxy catalog is
available upon request by email to the author ([email protected],
[email protected]
- …