34 research outputs found

    Effects of protein–carbohydrate supplementation on immunity and resistance training outcomes: a double-blind, randomized, controlled clinical trial

    Get PDF
    Purpose: To examine the impact of ingesting hydrolyzed beef protein, whey protein, and carbohydrate on resistance training outcomes, body composition, muscle thickness, blood indices of health and salivary human neutrophil peptides (HNP1-3), as reference of humoral immunity followed an 8-week resistance training program in college athletes. Methods: Twenty-seven recreationally physically active males and females (n = 9 per treatment) were randomly assigned to one of the three groups: hydrolyzed beef protein, whey protein, or non-protein isoenergetic carbohydrate. Treatment consisted of ingesting 20 g of supplement, mixed with orange juice, once a day immediately post-workout or before breakfast on non-training days. Measurements were performed pre- and post-intervention on total load (kg) lifted at the first and last workout, body composition (via plethysmography) vastus medialis thickness (mm) (via ultrasonography), and blood indices of health. Salivary HNP1-3 were determined before and after performing the first and last workout. Results: Salivary concentration and secretion rates of the HNP1-3 decreased in the beef condition only from pre-first-workout (1.90 ± 0.83 μg/mL; 2.95 ± 2.83 μg/min, respectively) to pre-last-workout (0.92 ± 0.63 μg/mL, p = 0.025, d = 1.03; 0.76 ± 0.74 μg/min, p = 0.049, d = 0.95), and post-last-workout (0.95 ± 0.60 μg/mL, p = 0.032, d = 1.00; 0.59 ± 0.52 μg/min, p = 0.027, d = 1.02). No other significant differences between groups were observed. Conclusions: Supplementation with a carbohydrate–protein beverage may support resistance training outcomes in a comparable way as the ingestion of only carbohydrate. Furthermore, the ingestion of 20 g of hydrolyzed beef protein resulted in a decreased level and secretion rates of the HNP1-3 from baseline with no negative effect on blood indices of health

    Glutamine and skeletal muscle

    No full text
    Of the group of 20 amino acids which covalently bonded in linear sequences to form all proteins from the oldest bacteria to the most complex forms of life, glutamine deserves special attention. For many mammals, including human beings, glutamine, especially intermediate metabolism of amino acids of muscle cells, is the most abundant free amino acid in the body and is important in many cell types, playing an important role in a number of essential functions. In high catabolism conditions, such as diseases and exhausting exercise, the synthesis of glutamine does not supply the needs demanded by the organism. In this process, one of the most important sites of glutamine synthesis is the skeletal muscle, not for its synthesis capacity per se, but because it represents at least 40 % of total bodily mass

    Method Protocols for Metabolic and Functional Analysis of the BRIN-BD11 ß-Cell Line: A Preclinical Model for Type 2 Diabetes

    No full text
    In type 2 diabetes, prolonged dysregulation of signalling and ß-cell metabolic control leads to ß-cell dysfunction, and is increasingly associated with abnormal metabolic states which disrupt normal cellular physiology. Utilization of appropriate ß-cell models enables a systematic approach to understand the impact of perturbations to the biological system. The BRIN-BD11 ß-cell line is a useful, pre-clinical cell model for ß-cell dysfunction associated with type 2 diabetes, among other metabolic disorders. The present chapter describes detection and analysis of ß-cell dysfunction with respect to changes in bioenergetics and metabolism, generation of intracellular reactive oxygen species, and acute and chronic insulin secretion in the BRIN-BD11 cell line
    corecore