17 research outputs found
Prehospital resuscitation with hypertonic saline-dextran modulates inflammatory, coagulation and endothelial activation marker profiles in severe traumatic brain injured patients
<p>Abstract</p> <p>Background</p> <p>Traumatic brain injury (TBI) initiates interrelated inflammatory and coagulation cascades characterized by wide-spread cellular activation, induction of leukocyte and endothelial cell adhesion molecules and release of soluble pro/antiinflammatory cytokines and thrombotic mediators. Resuscitative care is focused on optimizing cerebral perfusion and reducing secondary injury processes. Hypertonic saline is an effective osmotherapeutic agent for the treatment of intracranial hypertension and has immunomodulatory properties that may confer neuroprotection. This study examined the impact of hypertonic fluids on inflammatory/coagulation cascades in isolated head injury.</p> <p>Methods</p> <p>Using a prospective, randomized controlled trial we investigated the impact of prehospital resuscitation of severe TBI (GCS < 8) patients using 7.5% hypertonic saline in combination with 6% dextran-70 (HSD) <it>vs </it>0.9% normal saline (NS), on selected cellular and soluble inflammatory/coagulation markers. Serial blood samples were drawn from 65 patients (30 HSD, 35 NS) at the time of hospital admission and at 12, 24, and 48-h post-resuscitation. Flow cytometry was used to analyze leukocyte cell-surface adhesion (CD62L, CD11b) and degranulation (CD63, CD66b) molecules. Circulating concentrations of soluble (s)L- and sE-selectins (sL-, sE-selectins), vascular and intercellular adhesion molecules (sVCAM-1, sICAM-1), pro/antiinflammatory cytokines [tumor necrosis factor (TNF)-α and interleukin (IL-10)], tissue factor (sTF), thrombomodulin (sTM) and D-dimers (D-D) were assessed by enzyme immunoassay. Twenty-five healthy subjects were studied as a control group.</p> <p>Results</p> <p>TBI provoked marked alterations in a majority of the inflammatory/coagulation markers assessed in all patients. Relative to control, NS patients showed up to a 2-fold higher surface expression of CD62L, CD11b and CD66b on polymorphonuclear neutrophils (PMNs) and monocytes that persisted for 48-h. HSD blunted the expression of these cell-surface activation/adhesion molecules at all time-points to levels approaching control values. Admission concentrations of endothelial-derived sVCAM-1 and sE-selectin were generally reduced in HSD patients. Circulating sL-selectin levels were significantly elevated at 12 and 48, but not 24 h post-resuscitation with HSD. TNF-α and IL-10 levels were elevated above control throughout the study period in all patients, but were reduced in HSD patients. Plasma sTF and D-D levels were also significantly lower in HSD patients, whereas sTM levels remained at control levels.</p> <p>Conclusions</p> <p>These findings support an important modulatory role of HSD resuscitation in attenuating the upregulation of leukocyte/endothelial cell proinflammatory/prothrombotic mediators, which may help ameliorate secondary brain injury after TBI.</p> <p>Trial registration</p> <p>NCT00878631.</p
Immunotherapy in Medulloblastoma: Current State of Research, Challenges, and Future Perspectives.
Medulloblastoma (MB), a primary tumor of the central nervous system, is among the most prevalent pediatric neoplasms. The median age of diagnosis is six. Conventional therapies include surgical resection of the tumor with subsequent radiation and chemotherapy. However, these therapies often cause severe brain damage, and still, approximately 75% of pediatric patients relapse within a few years. Because the conventional therapies cause such severe damage, especially in the pediatric developing brain, there is an urgent need for better treatment strategies such as immunotherapy, which over the years has gained accumulating interest. Cancer immunotherapy aims to enhance the body's own immune response to tumors and is already widely used in the clinic, e.g., in the treatment of melanoma and lung cancer. However, little is known about the possible application of immunotherapy in brain cancer. In this review, we will provide an overview of the current consensus on MB classification and the state of in vitro, in vivo, and clinical research concerning immunotherapy in MB. Based on existing evidence, we will especially focus on immune checkpoint inhibition and CAR T-cell therapy. Additionally, we will discuss challenges associated with these immunotherapies and relevant strategies to overcome those
A challenge-based interdisciplinary undergraduate concept fostering translational medicine
Translational medicine (TM) is an interdisciplinary branch of biomedicine that bridges the gap from bench-to-bedside to improve global health. Fundamental TM skills include interdisciplinary collaboration, communication, critical thinking, and creative problem-solving (4Cs). TM is currently limited in undergraduate biomedical education programs, with little patient contact and opportunities for collaboration between different disciplines. In this study, we developed and evaluated a novel interdisciplinary challenge-based educational concept, grounded in the theoretical framework of experimental research-based education, to implement TM in undergraduate biomedicine and medicine programs. Students were introduced to an authentic clinical problem through an interdisciplinary session with patients, medical doctors, and scientists. Next, students collaborated in groups to design unique laboratory-based research proposals addressing this problem. Stakeholders subsequently rewarded the best proposal with funding to be executed in a consecutive interdisciplinary laboratory course, in which mixed teams of biomedicine and medicine students performed the research in a fully equipped wet laboratory. Written questionnaires and focus groups revealed that students developed 4C skills and acquired a 4C mindset. Working on an authentic patient case and the interdisciplinary setting positively contributed to communication, collaboration, critical thinking, and creative problem-solving skills. Furthermore, students were intrinsically motivated by (i) the relevance of their work that made them feel taken seriously and competent, (ii) the patient involvement that highlighted the societal relevance of their work, and (iii) the acquisition of a realistic view of what doing science in a biomedical research laboratory is. In conclusion, we showcase a widely applicable interdisciplinary challenge-based undergraduate concept fostering TM
The effect of protective gas on annealing of 42CrMo4 steel pipes
Translated from Czech (Kovove Mater. 2000 (3) p. 149-159)Available from British Library Document Supply Centre-DSC:9023.190(no 9862)T / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo
SCA1+ Cells from the Heart Possess a Molecular Circadian Clock and Display Circadian Oscillations in Cellular Functions
Stem cell antigen 1-positive (SCA1+) cells (SPCs) have been investigated in cell-based cardiac repair and pharmacological research, although improved cardiac function after injection has been variable and the mode of action remains unclear. Circadian (24-hr) rhythms are biorhythms regulated by molecular clocks that play an important role in (patho)physiology. Here, we describe (1) the presence of a molecular circadian clock in SPCs and (2) circadian rhythmicity in SPC function. We isolated SPCs from human fetal heart and found that these cells possess a molecular clock based on typical oscillations in core clock components BMAL1 and CRY1. Functional analyses revealed that circadian rhythmicity also governs SPC proliferation, stress tolerance, and growth factor release, with large differences between peaks and troughs. We conclude that SPCs contain a circadian molecular clock that controls crucial cellular functions. Taking circadian rhythms into account may improve reproducibility and outcome of research and therapies using SPCs