9 research outputs found

    Soliton eigenvalue control with optical lattices

    Full text link
    We address the dynamics of higher-order solitons in optical lattices, and predict their self-splitting into the set of their single-soliton constituents. The splitting is induced by the potential introduced by the lattice, together with the imprinting of a phase tilt onto the initial multisoliton states. The phenomenon allows the controllable generation of several coherent solitons linked via their Zakharov-Shabat eigenvalues. Application of the scheme to the generation of correlated matter waves in Bose-Einstein condensates is discussed.Comment: 13 pages, 4 figures, to appear in Physical Review Letter

    Spatiotemporal discrete multicolor solitons

    Full text link
    We have found various families of two-dimensional spatiotemporal solitons in quadratically nonlinear waveguide arrays. The families of unstaggered odd, even and twisted stationary solutions are thoroughly characterized and their stability against perturbations is investigated. We show that the twisted and even solutions display instability, while most of the odd solitons show remarkable stability upon evolution.Comment: 18 pages,7 figures. To appear in Physical Review

    Multicolor vortex solitons in two-dimensional photonic lattices

    Full text link
    We report on the existence and stability of multicolor lattice vortex solitons constituted by coupled fundamental frequency and second-harmonic waves in optical lattices in quadratic nonlinear media. It is shown that the solitons are stable almost in the entire domain of their existence, and that the instability domain decreases with the increase of the lattice depth. We also show the generation of the solitons, and the feasibility of the concept of lattice soliton algebra.Comment: 18 pages,6 figures. To appear in Physical Review

    Surface waves at the interface between left-handed and birefringent materials

    Full text link
    We theoretically investigate the existence and properties of hybrid surface waves forming at interfaces between left-handed materials and dielectric birefringent media. The existence conditions of such waves are found to be highly relaxed in comparison to the original hybrid surface waves, discovered by Dyakonov, in configurations involving birefringent materials and right-handed media. Hybrid surface waves in left-handed materials feature remarkable properties: (i) a high degree of localization and (ii) coexistence of several guided solutions. The existence of several hybrid surface waves for the same parameter set is linked to the birefringent nature of the medium whereas the strong localization is related to the presence of the left-handed material. The hybrid surface modes appear for large areas in the parameter space.Comment: 11 pages, 6 figure

    Stability of spinning ring solitons of the cubic-quintic nonlinear Schrodinger equation

    Full text link
    We investigate stability of (2+1)-dimensional ring solitons of the nonlinear Schrodinger equation with focusing cubic and defocusing quintic nonlinearities. Computing eigenvalues of the linearised equation, we show that rings with spin (topological charge) s=1 and s=2 are linearly stable, provided that they are very broad. The stability regions occupy, respectively, 9% and 8% of the corresponding existence regions. These results finally resolve a controversial stability issue for this class of models.Comment: 10 pages, 5 figures, accepted to Phys. Lett.

    Globally-Linked Vortex Clusters in Trapped Wave Fields

    Full text link
    We put forward the existence of a rich variety of fully stationary vortex structures, termed H-clusters, made of an increasing number of vortices nested in paraxial wave fields confined by trapping potentials. However, we show that the constituent vortices are globally linked, rather than products of independent vortices. Also, they always feature a monopolar global wave front and exist in nonlinear systems, such as Bose-Einstein condensates. Clusters with multipolar global wave fronts are non-stationary or at best flipping.Comment: 4 pages, 5 PostScript figure
    corecore