37 research outputs found

    Quantum Storage of Light Using Nanophotonic Resonators Coupled to Erbium Ion Ensembles

    Get PDF
    This thesis presents on-chip quantum storage of telecommunication wavelength light using nanophotonic resonators coupled to erbium ions. Storage of light in an optical quantum memory has applications in quantum information and quantum communication. For example, long distance quantum communication using quantum repeater protocols is enabled by quantum memories. Efficient and broadband quantum memories can be made from resonators coupled to ensembles of atoms. Like other rare earth ions, erbium is appealing for quantum applications due to its long optical and hyperfine coherence times in the solid state at low temperatures. However, erbium is unique among rare earth ions in having an optical transition in the telecommunication C band (1540 nm), making it particularly appealing for quantum communication applications. In this work, we use nano-scale resonators coupled to erbium-167 ions in yttrium orthosilicate crystals (167Er 3+:Y2SiO5). We demonstrate quantum storage in two types of resonators. In a nanobeam photonic crystal resonator milled directly in 167Er 3+:Y2SiO5, we show storage of weak coherent states using the atomic frequency comb protocol. The storage fidelity for single photon states is estimated to be at least 93.7% &#177; 2.4% using decoy state analysis, Storage of up to 10 &#956;s and multimode storage are demonstrated. Using a hybrid amorphous silicon 167Er 3+:Y2SiO5 resonator and on-chip electrodes, we demonstrate a multifunctional memory using the atomic frequency comb protocol with DC Stark shift control. In addition dynamic control of memory time, Stark shift control allows modifications to the frequency and bandwidth of stored light. We show tuning of the output pulse by &#177; 20 MHz relative to the input pulse, and broadening of the pulse bandwidth by more than a factor of three. The storage efficiency in both devices was limited to &lt; 1%. On the way to these results, we describe 167Er 3+:Y2SiO5 spectroscopy measurements including optical coherence times and hyperfine lifetimes below 1 K, and we estimate the linear DC stark shift along two crystal directions. The design and fabrication of the on-chip resonators is presented. We discuss the limitations to storage time and efficiency, including superhyperfine coupling and resonator parameters, and we outline a path forward for improving the storage efficiency in these types of devices.</p

    Hybrid silicon on silicon carbide integrated photonics platform

    Get PDF
    We demonstrate a hybrid on-chip photonics platform based on crystalline silicon resonators and waveguides patterned on top of silicon carbide. The devices were fabricated with membrane transfer followed by standard electron beam patterning procedures. The platform allows the integration of high quality silicon photonics with color centers in silicon carbide operating in the near infrared for spin-photon interfaces used in quantum information processing applications. We measure waveguide-coupled ring resonators with loaded quality factors up to 23 000 at cryogenic temperatures

    Multifunctional on-chip storage at telecommunication wavelength for quantum networks

    Get PDF
    Quantum networks will enable a variety of applications, from secure communication and precision measurements to distributed quantum computing. Storing photonic qubits and controlling their frequency, bandwidth and retrieval time are important functionalities in future optical quantum networks. Here we demonstrate these functions using an ensemble of erbium ions in yttrium orthosilicate coupled to a silicon photonic resonator and controlled via on-chip electrodes. Light in the telecommunication C-band is stored, manipulated and retrieved using a dynamic atomic frequency comb protocol controlled by linear DC Stark shifts of the ion ensemble's transition frequencies. We demonstrate memory time control in a digital fashion in increments of 50 ns, frequency shifting by more than a pulse-width (±39\pm39 MHz), and a bandwidth increase by a factor of three, from 6 MHz to 18 MHz. Using on-chip electrodes, electric fields as high as 3 kV/cm were achieved with a low applied bias of 5 V, making this an appealing platform for rare earth ions, which experience Stark shifts of the order of 10 kHz/(V/cm).Comment: 26 pages, 5 figure

    Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories

    Get PDF
    Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here, we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories

    Multifunctional on-chip storage at telecommunication wavelength for quantum networks

    Get PDF
    Quantum networks will enable a variety of applications, from secure communication and precision measurements to distributed quantum computing. Storing photonic qubits and controlling their frequency, bandwidth and retrieval time are important functionalities in future optical quantum networks. Here we demonstrate these functions using an ensemble of erbium ions in yttrium orthosilicate coupled to a silicon photonic resonator and controlled via on-chip electrodes. Light in the telecommunication C-band is stored, manipulated and retrieved using a dynamic atomic frequency comb protocol controlled by linear DC Stark shifts of the ion ensemble's transition frequencies. We demonstrate memory time control in a digital fashion in increments of 50 ns, frequency shifting by more than a pulse-width (±39 MHz), and a bandwidth increase by a factor of three, from 6 MHz to 18 MHz. Using on-chip electrodes, electric fields as high as 3 kV/cm were achieved with a low applied bias of 5 V, making this an appealing platform for rare earth ions, which experience Stark shifts of the order of 10 kHz/(V/cm)

    Coherent Control of Rare-Earth Ions in On-Chip Devices for Microwave-to-Optical Transduction

    Get PDF
    Entangling microwave and optical photons is essential to harness disparate technologies for building larger scale quantum networks. We demonstrate coherent microwave-to-optical transduction using a nanobeam waveguide containing rare-earth ions in a dilution refrigerator

    Coupling erbium dopants in yttrium orthosilicate to silicon photonic resonators and waveguides

    Get PDF
    A scalable platform for on-chip optical quantum networks will rely on standard top-down nanofabrication techniques and solid-state emitters with long coherence times. We present a new hybrid platform that integrates amorphous silicon photonic waveguides and microresonators fabricated on top of a yttrium orthosilicate substrate doped with erbium ions. The quality factor of one such resonator was measured to exceed 100,000 and the ensemble cooperativity was measured to be 0.54. The resonator-coupled ions exhibited spontaneous emission rate enhancement and increased coupling to the input field, as required for further development of on-chip quantum light-matter interfaces

    Optically addressing single rare-earth ions in a nanophotonic cavity

    Get PDF
    We demonstrate optical probing of spectrally resolved single Nd rare-earth ions in yttrium orthovanadate. The ions are coupled to a photonic crystal resonator and show strong enhancement of the optical emission rate via the Purcell effect, resulting in near radiatively limited single photon emission. The measured high coupling cooperativity between a single photon and the ion allows for the observation of coherent optical Rabi oscillations. This could enable optically controlled spin qubits, quantum logic gates, and spin-photon interfaces for future quantum networks
    corecore