138 research outputs found

    COPD: Do Imaging Measurements of Emphysema and Airway Disease Explain Symptoms and Exercise Capacity?

    Get PDF
    PURPOSE: To determine the role of imaging measurements of emphysema and airway disease in determining chronic obstructive pulmonary disease (COPD) symptoms and exercise limitation in patients with COPD, particularly in patients with mild-to-moderate disease. MATERIALS AND METHODS: Participants (n = 116) with Global Initiative for Chronic Obstructive Lung Disease (GOLD) grade U (unclassified) or grade I-IV COPD provided informed consent to an ethics board-approved HIPAA-compliant protocol and underwent spirometry and plethysmography, completed the St George\u27s Respiratory Questionnaire (SGRQ), completed a 6-minute walk test for the 6-minute walk distance (6MWD), and underwent hyperpolarized helium 3 ((3)He) magnetic resonance (MR) imaging and computed tomography (CT). Emphysema was estimated by using the MR imaging apparent diffusion coefficient (ADC) and the relative area of the CT attenuation histogram with attenuation of -950 HU or less (RA950). Airway disease was measured by using the CT airway wall thickness of airways with an internal perimeter of 10 mm and total airway count. Ventilation defect percentage at (3)He MR imaging was used to measure ventilation. Multivariable regression models for the 6MWD and SGRQ symptom subscore were used to evaluate the relationships between physiologic and imaging measurements. RESULTS: Multivariate modeling for the 6MWD in 80 patients with GOLD grade U-II COPD showed that ADC (β = 0.34, P = .04), diffusing capacity of the lung for carbon monoxide (β = 0.60, P = .0008), and residual volume/total lung capacity (β = -0.26, P = .02) were significant variables, while forced expiratory volume in 1 second (FEV1) and airway disease measurements were not. In 36 patients with GOLD grade III or IV disease, FEV1 (β = 0.48, P = .01) was the only significant contributor in a multivariate model for 6MWD. MR imaging emphysema measurements also made the greatest relative contribution to symptoms in patients with milder (GOLD grade U-II) COPD (ADC: β = 0.60, P = .005; RA950: β = -0.52, P = .02; FEV1: β = -0.45, P = .0002) and in grade III or IV disease (ADC: β = 0.95, P = .01; RA950: β = -0.62, P = .07; airway count: β = -0.49, P = .01). CONCLUSION: In patients with mild-to-moderate COPD, MR imaging emphysema measurements played a dominant role in the expression of exercise limitation, while both CT and MR imaging measurements of emphysema explained symptoms

    What are ventilation defects in asthma?

    Get PDF
    BACKGROUND: Hyperpolarised (3)He MRI provides a way to visualise regional pulmonary functional abnormalities that in asthma are thought to be related to airway morphological abnormalities. However, the exact aetiology of ventilation defects in asthma is not well understood. OBJECTIVE: To better understand the determinants of ventilation defects in asthma, we evaluated well-established clinical as well as (3)He MRI and X-ray CT airway measurements in healthy subjects and subjects with asthma. METHODS: Thirty-four subjects (n=26 subjects with asthma, n=8 healthy volunteers) underwent MRI, spirometry, plethysmography, fraction of exhaled nitric oxide analysis, methacholine challenge and CT for a region-of-interest proximal to ventilation defects. For subjects who consented to CT (n=18 subjects with asthma, n=5 healthy volunteers), we evaluated 3(rd) to 5th generation airway wall area and wall thickness per cent and lumen area. RESULTS: Seventeen subjects with asthma (17/26=65%) had visually obvious evidence of (3)He ventilation defects prior to bronchoprovocation and nine subjects with asthma had no ventilation defects prior to bronchoprovocation (9/26=35%). Subjects with asthma with defects were older (p=0.01) with worse forced expiratory volume in 1 s (FEV1)/forced vital capacity (p=0.0003), airways resistance (p=0.004), fraction of exhaled nitric oxide (p=0.03), greater bronchoprovocation concentration of methacholine that reduced FEV1 by 20% (p=0.008) and wall thickness per cent (p=0.02) compared with subjects with asthma without defects. There was a moderate correlation for wall area per cent with ventilation defect per cent (r=0.43, p=0.04). CONCLUSIONS: Subjects with asthma with (3)He ventilation defects were older with significantly worse airway hyper-responsiveness, inflammation and airway remodelling but similar FEV1 as subjects with asthma without defects; hyperpolarised (3)He ventilation abnormalities were spatially and quantitatively related to abnormally remodelled airways

    Management of COPD:Is there a role for quantitative imaging?

    Get PDF
    While the recent development of quantitative imaging methods have led to their increased use in the diagnosis and management of many chronic diseases, medical imaging still plays a limited role in the management of chronic obstructive pulmonary disease (COPD). In this review we highlight three pulmonary imaging modalities: computed tomography (CT), magnetic resonance imaging (MRI) and optical coherence tomography (OCT) imaging and the COPD biomarkers that may be helpful for managing COPD patients. We discussed the current role imaging plays in COPD management as well as the potential role quantitative imaging will play by identifying imaging phenotypes to enable more effective COPD management and improved outcomes

    MRI ventilation abnormalities predict quality-of-life and lung function changes in mild-to-moderate COPD: Longitudinal TINCan study

    Get PDF
    CT biomarkers of emphysema (15th percentile of the CT density histogram, HU15%) and airways disease (wall thickness of airways with 10 mm internal perimeter, Pi10) have shown promise for providing prognostic information.2 Although recent data3 showed that the change in CT emphysema may be used to estimate the efficacy of therapy in patients with α-1-antitrypsin-deficiency, thus far none of the currently developed CT biomarkers have been shown to reflect changes in outcomes that are important to patients with COPD. MRI with inhaled noble gases provide highly sensitive and unique microstructural and functional information in COPD.4 MRI biomarkers of COPD are highly reproducible,5 are associated with COPD outcomes6 and detect changes with greater sensitivity and before disease-related changes can be detected by CT or FEV1. Here we evaluated longitudinal changes in both CT and MRI measurements of COPD. Based on previous longitudinal results,8 ,10 we hypothesised that 3He MRI biomarkers would predict quality-of-life and FEV1 changes in COPD, and that longitudinal changes in MRI biomarkers would be correlated with changes in COPD quality-of-life measures

    Quantitative CT: Associations between Emphysema, Airway Wall Thickness and Body Composition in COPD

    Get PDF
    The objective of the present study was to determine the association between CT phenotypes—emphysema by low attenuation area and bronchitis by airway wall thickness—and body composition parameters in a large cohort of subjects with and without COPD. In 452 COPD subjects and 459 subjects without COPD, CT scans were performed to determine emphysema (%LAA), airway wall thickness (AWT-Pi10), and lung mass. Muscle wasting based on FFMI was assessed by bioelectrical impedance. In both the men and women with COPD, FFMI was negatively associated with %LAA. FMI was positively associated with AWT-Pi10 in both subjects with and without COPD. Among the subjects with muscle wasting, the percentage emphysema was high, but the predictive value was moderate. In conclusion, the present study strengthens the hypothesis that the subgroup of COPD cases with muscle wasting have emphysema. Airway wall thickness is positively associated with fat mass index in both subjects with and without COPD
    corecore