7,605 research outputs found
On the Adjoint Operator in Photoacoustic Tomography
Photoacoustic Tomography (PAT) is an emerging biomedical "imaging from
coupled physics" technique, in which the image contrast is due to optical
absorption, but the information is carried to the surface of the tissue as
ultrasound pulses. Many algorithms and formulae for PAT image reconstruction
have been proposed for the case when a complete data set is available. In many
practical imaging scenarios, however, it is not possible to obtain the full
data, or the data may be sub-sampled for faster data acquisition. In such
cases, image reconstruction algorithms that can incorporate prior knowledge to
ameliorate the loss of data are required. Hence, recently there has been an
increased interest in using variational image reconstruction. A crucial
ingredient for the application of these techniques is the adjoint of the PAT
forward operator, which is described in this article from physical, theoretical
and numerical perspectives. First, a simple mathematical derivation of the
adjoint of the PAT forward operator in the continuous framework is presented.
Then, an efficient numerical implementation of the adjoint using a k-space time
domain wave propagation model is described and illustrated in the context of
variational PAT image reconstruction, on both 2D and 3D examples including
inhomogeneous sound speed. The principal advantage of this analytical adjoint
over an algebraic adjoint (obtained by taking the direct adjoint of the
particular numerical forward scheme used) is that it can be implemented using
currently available fast wave propagation solvers.Comment: submitted to "Inverse Problems
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
Quasicrystalline three-dimensional foams
We present a numerical study of quasiperiodic foams, in which the bubbles are
generated as duals of quasiperiodic Frank-Kasper phases. These foams are
investigated as potential candidates to the celebrated Kelvin problem for the
partition of three-dimensional space with equal volume bubbles and minimal
surface area. Interestingly, one of the computed structures falls close (but
still slightly above) the best known Weaire-Phelan periodic candidate. This
gives additional clues to understanding the main geometrical ingredients
driving the Kelvin problem
A Helmholtz equation solver using unsupervised learning: Application to transcranial ultrasound
Transcranial ultrasound therapy is increasingly used for the non-invasive
treatment of brain disorders. However, conventional numerical wave solvers are
currently too computationally expensive to be used online during treatments to
predict the acoustic field passing through the skull (e.g., to account for
subject-specific dose and targeting variations). As a step towards real-time
predictions, in the current work, a fast iterative solver for the heterogeneous
Helmholtz equation in 2D is developed using a fully-learned optimizer. The
lightweight network architecture is based on a modified UNet that includes a
learned hidden state. The network is trained using a physics-based loss
function and a set of idealized sound speed distributions with fully
unsupervised training (no knowledge of the true solution is required). The
learned optimizer shows excellent performance on the test set, and is capable
of generalization well outside the training examples, including to much larger
computational domains, and more complex source and sound speed distributions,
for example, those derived from x-ray computed tomography images of the skull.Comment: 23 pages, 13 figure
- …