1,556 research outputs found

    A Model of Demand with Interactions Among Consumers

    Get PDF

    Relativistic central--field Green's functions for the RATIP package

    Full text link
    From perturbation theory, Green's functions are known for providing a simple and convenient access to the (complete) spectrum of atoms and ions. Having these functions available, they may help carry out perturbation expansions to any order beyond the first one. For most realistic potentials, however, the Green's functions need to be calculated numerically since an analytic form is known only for free electrons or for their motion in a pure Coulomb field. Therefore, in order to facilitate the use of Green's functions also for atoms and ions other than the hydrogen--like ions, here we provide an extension to the Ratip program which supports the computation of relativistic (one--electron) Green's functions in an -- arbitrarily given -- central--field potential \rV(r). Different computational modes have been implemented to define these effective potentials and to generate the radial Green's functions for all bound--state energies E<0E < 0. In addition, care has been taken to provide a user--friendly component of the Ratip package by utilizing features of the Fortran 90/95 standard such as data structures, allocatable arrays, or a module--oriented design.Comment: 20 pages, 1 figur

    Samuel D. Gross, M.D. (1805-1884): an innovator, even in death.

    Get PDF
    Dr. Samuel Gross\u27 contributions to the field of surgery are well known and range from numerous clinical advances to pioneering scholarship and professional activities. Dr. Gross was ceaselessly ambitious and even remarked in his autobiography that his ‘‘conviction has always been that is far better for a man to wear out than to rust out.’’1 It is through this frame of motivation that Dr. Gross lived his life

    Iron Dynamics in a Gas-Water-Sediment Microcosm

    Get PDF
    Iron dynamics in eutrophic systems were studied in the laboratory utilizing gas-water-Sediment phase sealed microcosms. Sediments from Hyrum Reservoir (2.4 percent iron by weight) were placed in the dark to simulate the hypolimnetic regions of a eutrophic impoundment. Iron both chemically and physically was readily available to microorganisms of the aqueous phase because iron in these systems was soluble. In the light microcosms, which simulated shallow littoral regions of eutrophic impoundments, iron was found in higher aqueous phase concentrations than was predicted chemically and physically; this was rationalized through biological mechanisms. The experiment was conducted in two phases: Phase I lasted 189 days (0 and 0.300 mg NO3–N/1 inputs) and phase II lated 175 days (10mg NO3-N/1 imput). Average light microcosm effluent iron concentrations increased from 0.092 mg FE/1 (Phase I) to 0.246 mg Fe/1 (Phase II) given higher inorganic nitrogen inputs. In Phase II, when nitrogen input into the microcosms ceased (nitrogen perturbations, day 115), aqueous phase iron concentrations in the dark microcosms increased dramatically (0.011 to 0.624 mg Fe/1)
    • …
    corecore