10 research outputs found

    Digital Signal Processing

    Get PDF
    Contains an introduction and reports on fourteen research projects.National Science Foundation FellowshipNational Science Foundation (Grant ECS84-07285)U.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)Sanders Associates, Inc.U.S. Air Force - Office of Scientific Research (Contract F19628-85-K-0028)Advanced Television Research ProgramAmoco Foundation FellowshipHertz Foundation Fellowshi

    Digital Signal Processing

    Get PDF
    Contains an introduction and reports on fifteen research projects.National Science Foundation FellowshipU.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)National Science Foundation (Grant ECS 84-07285)Sanders Associates, Inc.U.S. Air Force - Office of Scientific Research (Contract F19628-85-K-0028)AT&T Bell Laboratories Doctoral Support ProgramCanada, Bell Northern Research ScholarshipCanada, Fonds pour la Formation de Chercheurs et /'Aide a la Recherche Postgraduate FellowshipCanada, Natural Science and Engineering Research Council Postgraduate FellowshipAmoco Foundation FellowshipFannie and John Hertz Foundation Fellowshi

    Digital Signal Processing

    Get PDF
    Contains an introduction and reports on twenty research projects.National Science Foundation (Grant ECS 84-07285)U.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)National Science Foundation FellowshipSanders Associates, Inc.U.S. Air Force - Office of Scientific Research (Contract F19628-85-K-0028)Canada, Bell Northern Research ScholarshipCanada, Fonds pour la Formation de Chercheurs et l'Aide a la Recherche Postgraduate FellowshipCanada, Natural Science and Engineering Research Council Postgraduate FellowshipU.S. Navy - Office of Naval Research (Contract N00014-81-K-0472)Fanny and John Hertz Foundation FellowshipCenter for Advanced Television StudiesAmoco Foundation FellowshipU.S. Air Force - Office of Scientific Research (Contract F19628-85-K-0028

    Signal Processing Research Program

    Get PDF
    Contains table of contents for Part III, table of contents for Section 1, an introduction and reports on fourteen research projects.Charles S. Draper Laboratory Contract DL-H-404158U.S. Navy - Office of Naval Research Grant N00014-89-J-1489National Science Foundation Grant MIP 87-14969Battelle LaboratoriesTel-Aviv University, Department of Electronic SystemsU.S. Army Research Office Contract DAAL03-86-D-0001The Federative Republic of Brazil ScholarshipSanders Associates, Inc.Bell Northern Research, Ltd.Amoco Foundation FellowshipGeneral Electric FellowshipNational Science Foundation FellowshipU.S. Air Force - Office of Scientific Research FellowshipU.S. Navy - Office of Naval Research Grant N00014-85-K-0272Natural Science and Engineering Research Council of Canada - Science and Technology Scholarshi

    Learning Query-Specific Distance Functions for Large-Scale Web Image Search

    No full text
    Abstract—Current Google image search adopt a hybrid search approach in which a text-based query (e.g., “Paris landmarks”) is used to retrieve a set of relevant images, which are then refined by the user (e.g., by re-ranking the retrieved images based on similarity to a selected example). We conjecture that given such hybrid image search engines, learning per-query distance functions over image features can improve the estimation of image similarity. We propose scalable solutions to learning query-specific distance functions by 1) adopting a simple large-margin learning framework, 2) using the query-logs of text-based image search engine to train distance functions used in content-based systems. We evaluate the feasibility and efficacy of our proposed system through comprehensive human evaluation, and compare the results with the state-of-the-art image distance function used by Google image search. Index Terms—Image search, image processing, content based retrieval, search engine, distance learning. I

    Articulated-pose estimation using brightness- and depth-constancy constraints

    No full text
    This paper explores several approaches for articulatedpose estimation, assuming that video-rate depth information is available, from either stereo cameras or other sensors. We use these depth measurements in the traditional linear brightness constraint equation, as well as in a depth constraint equation. To capture the joint constraints, we combine the brightness and depth constraints with twist mathematics. We address several important issues in the formation of the constraint equations, including updating the body rotation matrix without using a first-order matrix approximation and removing the coupling between the rotation and translation updates. The resulting constraint equations are linear on a modified parameter set. After solving these linear constraints, there is a single closedform non-linear transformation to return the updates to the original pose parameters. We show results for tracking body pose in oblique views of synthetic walking sequences and in moving-camera views of synthetic jumping-jack sequences. We also show results for tracking body pose in side views of a real walking sequence.
    corecore