40 research outputs found
The Akt inhibitor KP372-1 suppresses Akt activity and cell proliferation and induces apoptosis in thyroid cancer cells
The phosphatidylinositol 3Ⲡkinase (PI3K)/phosphatase and tensin homologue deleted on chromosome ten/Akt pathway, which is a critical regulator of cell proliferation and survival, is mutated or activated in a wide variety of cancers. Akt appears to be a key central node in this pathway and thus is an attractive target for targeted molecular therapy. We demonstrated that Akt is highly phosphorylated in thyroid cancer cell lines and human thyroid cancer specimens, and hypothesised that KP372-1, an Akt inhibitor, would block signalling through the PI3K pathway and inhibit cell proliferation while inducing apoptosis of thyroid cancer cells. KP372-1 blocked signalling downstream of Akt in thyroid tumour cells, leading to inhibition of cell proliferation and increased apoptosis. As thyroid cancer consistently expresses phosphorylated Akt and KP372-1 effectively blocks Akt signalling, further preclinical evaluation of this compound for treatment of thyroid cancer is warranted
Identifying allosteric fluctuation transitions between different protein conformational states as applied to Cyclin Dependent Kinase 2
BACKGROUND: The mechanisms underlying protein function and associated conformational change are dominated by a series of local entropy fluctuations affecting the global structure yet are mediated by only a few key residues. Transitional Dynamic Analysis (TDA) is a new method to detect these changes in local protein flexibility between different conformations arising from, for example, ligand binding. Additionally, Positional Impact Vertex for Entropy Transfer (PIVET) uses TDA to identify important residue contact changes that have a large impact on global fluctuation. We demonstrate the utility of these methods for Cyclin-dependent kinase 2 (CDK2), a system with crystal structures of this protein in multiple functionally relevant conformations and experimental data revealing the importance of local fluctuation changes for protein function. RESULTS: TDA and PIVET successfully identified select residues that are responsible for conformation specific regional fluctuation in the activation cycle of Cyclin Dependent Kinase 2 (CDK2). The detected local changes in protein flexibility have been experimentally confirmed to be essential for the regulation and function of the kinase. The methodologies also highlighted possible errors in previous molecular dynamic simulations that need to be resolved in order to understand this key player in cell cycle regulation. Finally, the use of entropy compensation as a possible allosteric mechanism for protein function is reported for CDK2. CONCLUSION: The methodologies embodied in TDA and PIVET provide a quick approach to identify local fluctuation change important for protein function and residue contacts that contributes to these changes. Further, these approaches can be used to check for possible errors in protein dynamic simulations and have the potential to facilitate a better understanding of the contribution of entropy to protein allostery and function
Reciprocal priming between receptor tyrosine kinases at recycling endosomes orchestrates cellular signalling outputs
From Wiley via Jisc Publications RouterHistory: received 2020-10-29, rev-recd 2021-04-27, accepted 2021-04-28, pub-electronic 2021-06-04Article version: VoRPublication status: PublishedFunder: Wellcome Trust; Grant(s): 107636/Z/15/Z, 210002/Z/17/ZFunder: UKRI | Biotechnology and Biological Sciences Research Council (BBSRC); Id: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/R015864/1, BB/M011208/1Funder: UKRI | Medical Research Council (MRC); Id: http://dx.doi.org/10.13039/501100000265; Grant(s): MR/T016043/1Funder: Cancer Research UK (CRUK); Id: http://dx.doi.org/10.13039/501100000289; Grant(s): A27445Funder: NIHR Manchester Biomedical Research Centre; Grant(s): ISâBRCâ1215â20007Funder: Breast Cancer Now; Grant(s): MANâQ2âY4/5Abstract: Integration of signalling downstream of individual receptor tyrosine kinases (RTKs) is crucial to fineâtune cellular homeostasis during development and in pathological conditions, including breast cancer. However, how signalling integration is regulated and whether the endocytic fate of single receptors controls such signalling integration remains poorly elucidated. Combining quantitative phosphoproteomics and targeted assays, we generated a detailed picture of recyclingâdependent fibroblast growth factor (FGF) signalling in breast cancer cells, with a focus on distinct FGF receptors (FGFRs). We discovered reciprocal priming between FGFRs and epidermal growth factor (EGF) receptor (EGFR) that is coordinated at recycling endosomes. FGFR recycling ligands induce EGFR phosphorylation on threonine 693. This phosphorylation event alters both FGFR and EGFR trafficking and primes FGFRâmediated proliferation but not cell invasion. In turn, FGFR signalling primes EGFâmediated outputs via EGFR threonine 693 phosphorylation. This reciprocal priming between distinct families of RTKs from recycling endosomes exemplifies a novel signalling integration hub where recycling endosomes orchestrate cellular behaviour. Therefore, targeting reciprocal priming over individual receptors may improve personalized therapies in breast and other cancers
CDK4 PHOSPHORYLATION STATUS AND RATIONAL USE OF CDK4/6 INHIBITORS IN ADVANCED THYROID CANCERS
info:eu-repo/semantics/publishe
CDK4 phosphorylation status and rational use of CDK4/6 inhibitors in advanced thyroid cancers
Oral presentation.info:eu-repo/semantics/publishe
CDK4 phosphorylation status and rational use of CDK4/6 inhibitors in advanced thyroid cancers
info:eu-repo/semantics/publishe
CDK4 phosphorylation status and rational use of CDK4/6 inhibitors in advanced thyroid cancers
info:eu-repo/semantics/publishe
RHOJ controls EMT-associated resistance to chemotherapy
The resistance of cancer cells to therapy is responsible for the death of most patients with cancer(1). Epithelial-to-mesenchymal transition (EMT) has been associated with resistance to therapy in different cancer cells(2,3). However, the mechanisms by which EMT mediates resistance to therapy remain poorly understood. Here, using a mouse model of skin squamous cell carcinoma undergoing spontaneous EMT during tumorigenesis, we found that EMT tumour cells are highly resistant to a wide range of anti-cancer therapies both in vivo and in vitro. Using gain and loss of function studies in vitro and in vivo, we found that RHOJ-a small GTPase that is preferentially expressed in EMT cancer cells-controls resistance to therapy. Using genome-wide transcriptomic and proteomic profiling, we found that RHOJ regulates EMT-associated resistance to chemotherapy by enhancing the response to replicative stress and activating the DNA-damage response, enabling tumour cells to rapidly repair DNA lesions induced by chemotherapy. RHOJ interacts with proteins that regulate nuclear actin, and inhibition of actin polymerization sensitizes EMT tumour cells to chemotherapy-induced cell death in a RHOJ-dependent manner. Together, our study uncovers the role and the mechanisms through which RHOJ acts as a key regulator of EMT-associated resistance to chemotherapy