51 research outputs found

    Optimizing the Efficiency of Fabry-Perot Interferometers with Silicon-Substrate Mirrors

    Full text link
    We present the novel design of microfabricated, silicon-substrate based mirrors for use in cryogenic Fabry-Perot Interferometers (FPIs) for the mid-IR to sub-mm/mm wavelength regime. One side of the silicon substrate will have a double-layer metamaterial anti-reflection coating (ARC) anisotropically etched into it and the other side will be metalized with a reflective mesh pattern. The double-layer ARC ensures a reflectance of less than 1% at the surface substrate over the FPI bandwidth. This low reflectance is required to achieve broadband capability and to mitigate contaminating resonances from the silicon surface. Two silicon substrates with their metalized surfaces facing each other and held parallel with an adjustable separation will compose the FPI. To create an FPI with nearly uniform finesse over the FPI bandwidth, we use a combination of inductive and capacitive gold meshes evaporated onto the silicon substrate. We also consider the use of niobium as a superconducting reflective mesh for long wavelengths to eliminate ohmic losses at each reflection in the resonating cavity of the FPI and thereby increase overall transmission. We develop these silicon-substrate based FPIs for use in ground (e.g. CCAT-prime), air (e.g. HIRMES), and future space-based telescopes (e.g. the Origins Space Telescope concept). Such FPIs are well suited for spectroscopic imaging with the upcoming large IR/sub-mm/mm TES bolometer detector arrays. Here we present the fabrication and performance of multi-layer, plasma-etched, silicon metamaterial ARC, as well as models of the mirrors and FPIs.Comment: Presented at SPIE Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, June 14, 201

    The Simons Observatory: Magnetic Shielding Measurements for the Universal Multiplexing Module

    Full text link
    The Simons Observatory (SO) includes four telescopes that will measure the temperature and polarization of the cosmic microwave background using over 60,000 highly sensitive transition-edge bolometers (TES). These multichroic TES bolometers are read out by a microwave RF SQUID multiplexing system with a multiplexing factor of 910. Given that both TESes and SQUIDs are susceptible to magnetic field pickup and that it is hard to predict how they will respond to such fields, it is important to characterize the magnetic response of these systems empirically. This information can then be used to limit spurious signals by informing magnetic shielding designs for the detectors and readout. This paper focuses on measurements of magnetic pickup with different magnetic shielding configurations for the SO universal multiplexing module (UMM), which contains the SQUIDs, associated resonators, and TES bias circuit. The magnetic pickup of a prototype UMM was tested under three shielding configurations: no shielding (copper packaging), aluminum packaging for the UMM, and a tin/lead-plated shield surrounding the entire dilution refrigerator 100 mK cold stage. The measurements show that the aluminum packaging outperforms the copper packaging by a shielding factor of 8-10, and adding the tin/lead-plated 1K shield further increases the relative shielding factor in the aluminum configuration by 1-2 orders of magnitude.Comment: 7 pages, 4 figure, conference proceedings submitted to the Journal of Low Temperature Physic

    Comparing complex impedance and bias step measurements of Simons Observatory transition edge sensors

    Full text link
    The Simons Observatory (SO) will perform ground-based observations of the cosmic microwave background (CMB) with several small and large aperture telescopes, each outfitted with thousands to tens of thousands of superconducting aluminum manganese (AlMn) transition-edge sensor bolometers (TESs). In-situ characterization of TES responsivities and effective time constants will be required multiple times each observing-day for calibrating time-streams during CMB map-making. Effective time constants are typically estimated in the field by briefly applying small amplitude square-waves on top of the TES DC biases, and fitting exponential decays in the bolometer response. These so-called "bias step" measurements can be rapidly implemented across entire arrays and therefore are attractive because they take up little observing time. However, individual detector complex impedance measurements, while too slow to implement during observations, can provide a fuller picture of the TES model and a better understanding of its temporal response. Here, we present the results of dark TES characterization of many prototype SO bolometers and compare the effective thermal time constants measured via bias steps to those derived from complex impedance data.Comment: 10 pages, 6 figures, SPIE Astronomical Telescopes + Instrumentation 2020, Paper Number: 11453-18

    In situ Performance of the Low Frequency Arrayfor Advanced ACTPol

    Full text link
    The Advanced Atacama Cosmology Telescope Polarimeter (AdvACT) \cite{thornton} is an upgrade for the Atacama Cosmology Telescope using Transition Edge Sensor (TES) detector arrays to measure cosmic microwave background (CMB) temperature and polarization anisotropies in multiple frequencies. The low frequency (LF) array was deployed early 2020. It consists of 292 TES bolometers observing in two bands centered at 27 GHz and 39 GHz. At these frequencies, it is sensitive to synchrotron radiation from our galaxy as well as to the CMB, and complements the AdvACT arrays operating at 90, 150 and 230 GHz. We present the initial LF array on-site characterization, including the time constant, optical efficiency and array sensitivity

    The Simons Observatory: Magnetic Sensitivity Measurements of Microwave SQUID Multiplexers

    Full text link
    The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes and one large-aperture telescope, which will observe from the Atacama Desert in Chile. In total, SO will field ∼\sim70,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities. The SO Universal Focal Plane Modules (UFMs) each contain a 150 mm diameter TES detector array, horn or lenslet optical coupling, cold readout components, and magnetic shielding. SO will use a microwave SQUID multiplexing (μ\muMUX) readout at an initial multiplexing factor of ∼\sim1000; the cold (100 mK) readout components are packaged in a μ\muMUX readout module, which is part of the UFM, and can also be characterized independently. The 100 mK stage TES bolometer arrays and microwave SQUIDs are sensitive to magnetic fields, and their measured response will vary with the degree to which they are magnetically shielded. We present measurements of the magnetic pickup of test microwave SQUID multiplexers as a study of various shielding configurations for the Simons Observatory. We discuss how these measurements motivated the material choice and design of the UFM magnetic shielding.Comment: 5 pages, 6 figures, conference proceedings submitted to IEEE Transactions on Applied Superconductivit
    • …
    corecore