16 research outputs found
Calorie restriction alters mitochondrial protein acetylation
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72130/1/j.1474-9726.2009.00503.x.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/72130/2/ACEL_503_sm_FigS1.pd
Recommended from our members
Early life environment and natural history of inflammatory bowel diseases
Background: Early life exposures may modify risk of inflammatory bowel diseases (IBD; Crohn’s disease (CD), ulcerative colitis (UC)). However, the relationship between early life exposures and natural history of IBD has not been previously examined. Methods: This single center study included patients with CD or UC recruited in a prospective IBD registry. Enrolled patients completed a detailed environmental questionnaire that assessed various early life environmental exposures. Our primary outcome was requirement for disease-related surgery in CD and UC. Logistic regression models defined independent effect of early life exposures, adjusting for potential confounders. Results: Our study included 333 CD and 270 UC patients. Just over half were female with a median age at diagnosis of 25 years. One-third of the cohort had history of bowel surgery (31%) and nearly half had used at least one biologic agent (47%). Among those with CD, being breastfed was associated with reduced risk of CD-related surgery (34% vs. 55%), while childhood cigarette smoke exposure was associated with increased risk. On multivariate analysis, history of being breastfed (odds ratio (OR) 0.21, 95% confidence interval [CI] 0.09–0.46) and cigarette smoke exposure as a child (OR 2.17, 95% CI 1.10–4.29) remained independently associated with surgery. None of the early life variables influenced disease phenotype or outcome in UC. Conclusion: A history of being breastfed was associated with a decreased risk while childhood cigarette smoke exposure was associated with an increased risk of surgery in patients with CD. Further investigation to examine biological mechanisms is warranted. Electronic supplementary material The online version of this article (doi:10.1186/s12876-014-0216-8) contains supplementary material, which is available to authorized users
m6A RNA Modification Controls Cell Fate Transition in Mammalian Embryonic Stem Cells
N6-methyl-adenosine (m[superscript 6]A) is the most abundant modification on messenger RNAs and is linked to human diseases, but its functions in mammalian development are poorly understood. Here we reveal the evolutionary conservation and function of m[superscript 6]A by mapping the m[superscript 6]A methylome in mouse and human embryonic stem cells. Thousands of messenger and long noncoding RNAs show conserved m[superscript 6]A modification, including transcripts encoding core pluripotency transcription factors. m[superscript 6]A is enriched over 3′ untranslated regions at defined sequence motifs and marks unstable transcripts, including transcripts turned over upon differentiation. Genetic inactivation or depletion of mouse and human Mettl3, one of the m[superscript 6]A methylases, led to m[superscript 6]A erasure on select target genes, prolonged Nanog expression upon differentiation, and impaired ESC exit from self-renewal toward differentiation into several lineages in vitro and in vivo. Thus, m[superscript 6]A is a mark of transcriptome flexibility required for stem cells to differentiate to specific lineages
Genome-Wide Maps of m6A circRNAs Identify Widespread and Cell-Type-Specific Methylation Patterns that Are Distinct from mRNAs
N6-methyladenosine (m6A) is the most abundant internal modification of mRNAs and is implicated in all aspects of post-transcriptional RNA metabolism. However, little is known about m6A modifications to circular (circ) RNAs. We developed a computational pipeline (AutoCirc) that, together with depletion of ribosomal RNA and m6A immunoprecipitation, defined thousands of m6A circRNAs with cell-type-specific expression. The presence of m6A circRNAs is corroborated by interaction between circRNAs and YTHDF1/YTHDF2, proteins that read m6A sites in mRNAs, and by reduced m6A levels upon depletion of METTL3, the m6A writer. Despite sharing m6A readers and writers, m6A circRNAs are frequently derived from exons that are not methylated in mRNAs, whereas mRNAs that are methylated on the same exons that compose m6A circRNAs exhibit less stability in a process regulated by YTHDF2. These results expand our understanding of the breadth of m6A modifications and uncover regulation of circRNAs through m6A modification
Recommended from our members
Calorie Restriction Alters Mitochondrial Protein Acetylation
Calorie restriction (CR) increases lifespan in organisms ranging from budding yeast through mammals. Mitochondrial adaptation represents a key component of the response to CR. Molecular mechanisms underlying this adaptation are largely unknown. Here we show that lysine acetylation of mitochondrial proteins is altered during CR in a tissue-specific fashion. Via large-scale mass spectrometry screening, we identify 72 candidate proteins involved in a variety of metabolic pathways with altered acetylation during CR. Mitochondrial acetylation changes may play an important role in the pro-longevity CR response
Recommended from our members
An Isoform of GTPase Regulator DOCK4 Localizes to the Stereocilia in the Inner Ear and Binds to Harmonin (USH1C)
The driving forces for the regulation of cell morphology are the Rho family GTPases that coordinate the assembly of the actin cytoskeleton. This dynamic feature is a result of tight coupling between the cytoskeleton and signal transduction and is facilitated by actin-binding proteins (ABPs). Mutations in the actin bundling and PDZ domain-containing protein harmonin are the causes of Usher syndrome type 1C (USH1C), a syndrome of congenital deafness and progressive blindness, as well as certain forms of non-syndromic deafness. Here, we have used the yeast two-hybrid assay to isolate molecular partners of harmonin and identified DOCK4, an unconventional guanine exchange factor for the Rho family of guanosine triphosphatases (Rho GEF GTPases), as a protein interacting with harmonin. Detailed molecular analysis revealed that a novel DOCK4 isoform (DOCK4-Ex49) is expressed in the brain, eye and inner ear tissues. We have further provided evidence that the DOCK4-Ex49 binds to nucleotide free Rac as effectively as DOCK2 and DOCK4 and it is a potent Rac activator. By immunostaining using a peptide antibody specific to DOCK4-Ex49, we showed its localization in the inner ear within the hair bundles along the stereocilia (SC). Together, our data indicate a possible Rac-DOCK4-ABP harmonin-activated signaling pathway in regulating actin cytoskeleton organization in stereocilia