10 research outputs found
Genetic and Phenotypic Heterogeneity in Familial Lecithin: Cholesterol Acyltransferase (LCAT) Deficiency Six Newly Identified Defective Alleles Further Contribute to the Structural Heterogeneity in This Disease
The presence of lecithin:cholesterol acyltransferase (LCAT) deficiency in six probands from five families originating from four different countries was confirmed by the absence or near absence of LCAT activity. Also, other invariate symptoms of LCAT deficiency, a significant increase of unesterified cholesterol in plasma lipoproteins and the reduction of plasma HDLcholesterol to levels below one-tenth of normal, were present in all probands. In the probands from two families, no mass was detectable, while in others reduced amounts of LCAT mass indicated the presence of a functionally inactive protein. Sequence analysis identified homozygous missense or nonsense mutations in four probands. Two probands from one family both were found to be compound heterozygotes for a missense mutation and for a single base insertion causing a readin
Clinical expression of familial hypercholesterolemia in clusters of mutations of the LDL receptor gene that cause a receptor-defective or receptor-negative phenotype
Seventy-one mutations of the low density lipoprotein (LDL) receptor gene were identified in 282 unrelated
Italian familial hypercholesterolemia (FH) heterozygotes. By extending genotype analysis to families of the index cases,
we identified 12 mutation clusters and localized them in specific areas of Italy. To evaluate the impact of these mutations
on the clinical expression of FH, the clusters were separated into 2 groups: receptor-defective and receptor-negative,
according to the LDL receptor defect caused by each mutation. These 2 groups were comparable in terms of the patients’
age, sex distribution, body mass index, arterial hypertension, and smoking status. In receptor-negative subjects, LDL
cholesterol was higher (118%) and high density lipoprotein cholesterol lower (25%) than the values found in
receptor-defective subjects. The prevalence of tendon xanthomas and coronary artery disease (CAD) was 2-fold higher
in receptor-negative subjects. In patients >30 years of age in both groups, the presence of CAD was related to age,
arterial hypertension, previous smoking, and LDL cholesterol level. Independent contributors to CAD in the
receptor-defective subjects were male sex, arterial hypertension, and LDL cholesterol level; in the receptor-negative
subjects, the first 2 variables were strong predictors of CAD, whereas the LDL cholesterol level had a lower impact than
in receptor-defective subjects. Overall, in receptor-negative subjects, the risk of CAD was 2.6-fold that of receptordefective
subjects. Wide interindividual variability in LDL cholesterol levels was found in each cluster. Apolipoprotein
E genotype analysis showed a lowering effect of the ε2 allele and a raising effect of the ε4 allele on the LDL cholesterol
level in both groups; however, the apolipoprotein E genotype accounted for only 4% of the variation in LDL cholesterol.
Haplotype analysis showed that all families of the major clusters shared the same intragenic haplotype cosegregating
with the mutation, thus suggesting the presence of common ancestors