102 research outputs found

    The Role of Chemokines in Melanoma Tumor Growth and Metastasis

    Get PDF
    Chemokines represent a large family of polypeptide signaling molecules that are notable for their role in chemotaxis, leukocyte homing, directional migration, and G protein coupled receptor activation. Chemo kines have recently been implicated in tumor progression and metastasis. The demonstration of chemokine expression and receptor activation in melanoma tumor cells themselves, and the tumor infiltrating leukocytes, may have important implications in terms of tumor progression and tumor cell homing to metastatic sites. In addition to their chemotactic and cell homing properties, chemokines and their receptors also play a part in other biologic functions relevant to oncogenesis, including cell proliferation, protease induction, tumor growth, and angiogenesis. Melanomas, and the cells derived from them, have been found to express a number of chemokines, including CXCL8 (interleukin-8), CXCL1–3 (MGSA-GROα–γ), CCL5 (RANTES), and CCL2 (monocyte chemotactic protein-1), which have been implicated in tumor growth and progression. Furthermore, recent studies have demonstrated organ-specific patterns of melanoma metastasis that correlate with their expression of specific chemokine receptors, including CXCR4, CCR7, and CCR10. This review will focus on the current biology of chemokines and chemokine receptors in the context of understanding their potential roles in melanoma progression and metastasis, and is not meant to be a comprehensive review of chemokine biology. Con tinued understanding and progress in the determination of the role of chemokines and their receptors in tumorigenesis and metastasis, including melanoma, may lead to novel approaches in the treatment and management of this disease

    Matrix Metalloproteinases: Pro- and Anti-Angiogenic Activities

    Get PDF
    Matrix metalloproteinases (MMP) are a family of structurally related proteinases most widely recognized for their ability to degrade extracellular matrix, although recent investigations have demonstrated other biologic functions for these enzymes. MMP are typically not constitutively expressed, but are regulated by: (1) cytokines, growth factors, and cell–cell and cell–matrix interactions that control gene expression; (2) activation of their proenzyme form; and (3) the presence of MMP inhibitors [tissue inhibitors of metalloproteinases, (TIMP)]. MMP have important roles in normal processes including development, wound healing, mammary gland, and uterine involution, but are also involved in angiogenesis, tumor growth, and metastasis. Angiogenesis, characteristically defined as the establishment of new vessels from pre-existing vasculature, is required for biologic processes such as wound healing and pathologic processes such as arthritis, tumor growth, and metastasis. Blocking of MMP activity has been studied for potential therapeutic efficacy in controlling such pathologic processes. Synthetic MMP inhibitors, most notably the hydroxymates, have been engineered for this purpose and are presently in clinical trial. These inhibitors may have broad versus specific MMP inhibitory activity. As increased nonmatrix degrading capabilities of MMP are recognized, however, i.e., cytokine activation, processing of proteins to molecules of distinct biologic function, it becomes less clear whether the nonselective inhibition of MMP activity for all pathologic processes involving MMP is appropriate. This review focuses upon the contribution of MMP to the process of tumor invasion and angiogenesis, and discusses the design and use of MMP inhibitors as therapeutic agents in these processes

    Label-free high-throughput photoacoustic tomography of suspected circulating melanoma tumor cells in patients in vivo

    Get PDF
    Significance: Detection and characterization of circulating tumor cells (CTCs), a key determinant of metastasis, are critical for determining risk of disease progression, understanding metastatic pathways, and facilitating early clinical intervention. Aim: We aim to demonstrate label-free imaging of suspected melanoma CTCs. Approach: We use a linear-array-based photoacoustic tomography system (LA-PAT) to detect melanoma CTCs, quantify their contrast-to-noise ratios (CNRs), and measure their flow velocities in most of the superficial veins in humans. Results: With LA-PAT, we successfully imaged suspected melanoma CTCs in patients in vivo, with a CNR >9. CTCs were detected in 3 of 16 patients with stage III or IV melanoma. Among the three CTC-positive patients, two had disease progression; among the 13 CTC-negative patients, 4 showed disease progression. Conclusions: We suggest that LA-PAT can detect suspected melanoma CTCs in patients in vivo and has potential clinical applications for disease monitoring in melanoma

    Handheld photoacoustic microscopy to detect melanoma depth in vivo

    Get PDF
    We developed handheld photoacoustic microscopy (PAM) to detect melanoma and determine tumor depth in nude mice in vivo. Compared to our previous PAM system for melanoma imaging, a new light delivery mechanism is introduced to improve light penetration. We show that melanomas with 4.1 and 3.7 mm thicknesses can be successfully detected in phantom and in in vivo experiments, respectively. With its deep melanoma imaging ability and handheld design, this system can be tested for clinical melanoma diagnosis, prognosis, and surgical planning for patients at the bedside

    In vivo melanoma depth detection by a handheld photoacoustic microscope

    Get PDF
    We developed a handheld photoacoustic microscope (PAM) to detect melanoma and determine tumor depth in nude mice in vivo. Compared to our previous PAM system for melanoma imaging, a new light delivery mechanism is introduced to improve light penetration. We show that melanomas with 4.1 mm and 3.3 mm thicknesses can be successfully detected in phantom and in vivo experiments, respectively. With its deep melanoma imaging ability and novel handheld design, this system is promising for clinical melanoma diagnosis, prognosis, and surgical planning for patients at the bedside

    Handheld photoacoustic probe to detect both melanoma depth and volume at high speed in vivo

    Get PDF
    We applied a linear-array-based photoacoustic probe to detect melanin-containing melanoma tumor depth and volume in nude mice in vivo. This system can image melanomas at five frames per second (fps), which is much faster than our previous handheld single transducer system (0.1 fps). We first theoretically show that, in addition to the higher frame rate, almost the entire boundary of the melanoma can be detected by the linear-array-based probe, while only the horizontal boundary could be detected by the previous system. Then we demonstrate the ability of this linear-array-based system in measuring both the depth and volume of melanoma through phantom, ex vivo, and in vivo experiments. The volume detection ability also enables us to accurately calculate the rate of growth of the tumor, which is an important parameter in quantifying the tumor activity. Our results show that this system can be used for clinical melanoma diagnosis and treatment in humans at the bedside

    In vivo multiscale photoacoustic microscopy of human skin

    Get PDF
    Scalability is a key feature of photoacoustic microscopy (PAM). Reports have shown that PAM systems can be designed to possess sub-micron resolution at shallow depths or penetrate centimeters deep at the expense of resolution while the number of resolved pixels in the depth direction remains high. This capability to readily tune the imaging parameters while maintaining the same inherent contrast could be extremely useful for a variety of biomedical applications. Human skin, with its layered vascular structure whose dimensions scale with depth, provides an ideal imaging target to illustrate this advantage. Here, we present results from in vivo human skin imaging experiments using two different PAM systems, an approach which enables better characterization of the cutaneous microvasculature throughout the imaging depth. Specifically, we show images from several distinct areas of skin: the palm and the forearm. For each region, the same area was imaged with both an optical-resolution PAM (OR-PAM) and an acoustic-resolution PAM (AR-PAM), and the subsequent images were combined into composite images. The OR-PAM provides less than 5 μm lateral resolution, capable of imaging the smallest capillary vessels, while the AR-PAM enables imaging at depths of several millimeters. Several structures are identifiable in the ORPAM images which cannot be differentiated in AR-PAM images, namely thin epidermal and stratum corneum layers, undulations in the dermal papillae, and capillary loops. However, the AR-PAM provides images of larger vessels, deeper than the OR-PAM can penetrate. These results demonstrate how PAM's scalability can be utilized to more fully characterize cutaneous vasculature, potentially impacting the assessment of numerous cardiovascular related and cutaneous diseases

    Rapid and sustained response to immune checkpoint inhibition in cutaneous squamous cell carcinoma after allogenic hematopoietic cell transplant for Sézary syndrome

    Get PDF
    BACKGROUND: Cutaneous squamous cell carcinoma (cSCC) is not uncommon in association with indolent malignancies that were treated with prior radiotherapy and after allogenic bone marrow transplantation. On the other hand, cutaneous T-cell lymphoma (CTCL) is a subtype of non-Hodgkin\u27s lymphoma which is characterized by an indolent course, with relative refractoriness to conventional chemotherapies and radiotherapy, and occasionally referred for allogeneic hematopoietic cell transplantation (allo-HCT). Recently, the use of immune checkpoint inhibitors has gained attention in the treatment of both cutaneous squamous cell carcinoma and hematological malignancies. However, many patients with hematological malignancies eventually undergo allo-HCT, raising the concern of potential adverse events (graft versus host disease) due to manipulation of the immune system with use of checkpoint inhibitors. CASE PRESENTATION: We describe a patient with relapsed refractory CTCL (Sézary Syndrome) who underwent allo-HCT with persistence of disease post-transplant. The patient additionally developed a progressively worsening lesion on the right shoulder which was biopsied and showed poorly differentiated carcinoma (cSCC). Pembrolizumab was started for the treatment of cSCC. After second cycle of treatment, the cSCC lesion responded dramatically to the use of immune checkpoint inhibitor. Also, the patient experienced significant resolution of pruritus and generalized erythema. During 24 months of follow up after initial treatment with checkpoint inhibition immunotherapy, the patient showed durable response of both cSCC and CTCL, as well as restoration of full donor chimerism, without obvious worsening of graft versus host disease (GVHD). CONCLUSION: This is the first case to our knowledge of rapid and durable response of both cSCC and CTCL to immune checkpoint inhibition after allo-HCT. Although this report highlights the potential for significant response to this class of medication, further studies are required to confirm the efficacy and safety of this approach in patients with CTCL after allo-HCT given the potential concern of GVHD

    Human Dermal Microvascular Endothelial Cells Produce Matrix Metalloproteinases in Response to Angiogenic Factors and Migration

    Get PDF
    Matrix metalloproteinases (MMPs) are a family of inducible enzymes that degrade extracellular matrix components, allowing cells to traverse connective tissue structures efficiently. Specific tissue inhibitors (TIMPs) function as physiologic inhibitors of MMP activity. Because neovascularization may require various proteinases, we characterized the profile of metalloenzyme production by microvascular endothelial cells (MEC) and the modulation of expression by phorbol esters (PMA) and by the physiologically relevant cytokines tumor necrosis factor-α (TNF-α), basic fibroblast growth factor, and interferon-γ. MMP expression by MEC and large-vessel human umbilical vein endothelial cells (HUVEC) was determined by enzyme-linked immunosorbent assay, immunoprecipitation, Northern hybridization, and transfection assays. Constitutive expression of MMPs by endothelial cells was low. PMA stimulated the production of collagenase, stromelysin, 92-kDa gelatinase, and TIMP-1 in both endothelial cell types. TIMP-2 was constitutively expressed by MEC and HUVEC, but was down-regulated by PMA. TNF-α induced an endothelial-cell-specific up-regulation of collagenase with a concomitant inhibition of PMA-induced TIMP-1 up-regulation, a response that is distinct from that of fibroblasts. Interferon-γ up-regulated TIMP-1 production by MEC and blocked PMA and TNT-induced up-regulation of collagenase. Northern hybridization assays showed pretranslational control of PMA-, basic fibroblast growth factor-, and TNF-α–induced MM.P expression. Collagenase-promoter CAT constructs containing 2.28 kb of the 5' region of the collagenase gene demonstrated transcriptional regulation. The potential physiologic relevance of such regulation was shown in an in vitro migration assay. MEC were stimulated to migrate by wounding and exposure to TNF-α. Collagenase mRNA was prominently expressed by the migrating cells, as shown by in situ hybridization. In sum, MEC have a unique profile of MMP expression and regulation compared with other cell types, which may be important for wound healing and angiogenesis, particularly during the early phase of migration
    • …
    corecore