352 research outputs found

    Quantum plasmonic waveguides: Au nanowires

    Full text link
    Combining miniaturization and good operating speed is a compelling yet crucial task for our society. Plasmonic waveguides enable the possibility of carrying information at optical operating speed while maintaining the dimension of the device in the nanometer range. Here we present a theoretical study of plasmonic waveguides extending our investigation to structures so small that Quantum Size Effects (QSE) become non negligible, namely quantum plasmonic waveguides. Specifically, we demonstrate and evaluate a blue-shift in Surface Plasmon (SP) resonance energy for an ultra-thin gold nanowire

    Effect of synthetic route on performance of La0.8Sr1.2Fe0.9Cu0.1O4±δ electrodes for symmetric solid oxides fuel cells

    Get PDF
    The solid oxide La0.8Sr1.2Fe0.9Cu0.1O4±δ of interest as electrode for Symmetric Solid Oxide Fuel Cells (SSOFCs) has been prepared via three different synthetic methods: solid-state reaction (SSR), melt citrate route (MC) and co-precipitation (CoP). In order to determine advantages and drawbacks of each synthesis, the materials have been characterized by X-Ray Powder Diffraction (XRD) and Scanning Electron Microscopy (SEM) analysis. Phase purity, structural and morphological characteristics of the powders have been determined. Wet chemical methods (CIT and COP) have the advantage over SSR synthesis of yielding small-sized powders (â\u88¼1mu;m); moreover, melt citrate route allows lowering the preparation temperature down to 1000 °C. Electrochemical characterization was performed by Electrochemical Impedance Spectroscopy (EIS) in air in an electrolyte supported symmetric cells configuration. Preliminary results allow to draw some conclusions on the relation between the structural and microstructural characteristics of the powders and the electrochemical performance

    Determinants of surgeon choice in cases of suspected implant rupture following mastectomy or aesthetic breast surgery: Clinical implications

    Get PDF
    Implant ruptures may be diagnosed by physical examination, ultrasound (US), and magnetic resonance imaging (MRI). The absence of standard guidelines to approach to implant ruptures may cause unnecessary surgical revisions in the absence of radiological confirmation of prosthetic damages.The purpose of this study was to analyze the diagnostic procedures applied to patients with suspected prosthetic rupture and surgeon choices to perform a revision or to plan a clinical and radiological follow-up.We conducted a retrospective study on 62 women submitted to revision surgery due to radiological diagnosis of suspected implant rupture, following mastectomy or aesthetic reconstruction, and admitted to a Plastic Surgery Department between 2008 and 2018.Seventy-three implants, believed to be ruptured, were explanted. One-third of these were intact and unnecessarily explanted. US associated with MRI evaluation resulted in the most helpful diagnostical method.A standardized clinical and radiological approach is essential to manage breast implant ruptures successfully. An innovative protocol is proposed in order to: ensure the appropriate management of implant ruptures and prevent unnecessary surgical revisions; reduce the risk of claims for medical malpractice in cases of unsatisfactory final aesthetic results or worse than before

    The role of thermal effects in plasma medical applications: Biological and calorimetric analysis

    Get PDF
    Abstract: Plasma Medicine tools exploit the therapeutic effects of the exposure of living matter to plasma produced at atmospheric pressure. Since these plasmas are usually characterized by a non-thermal equilibrium (highly energetic electrons, low temperature ions), thermal effects on the substrate are usually considered negligible. Conversely, reactive oxygen and nitrogen species (RONS), UV radiation and metastables are thought to play a major role. In this contribution, we compare the presence of thermal effects in different operational regimes (corresponding to different power levels) of the Plasma Coagulation Controller (PCC), a plasma source specifically designed for accelerating blood coagulation. In particular, we analyze the application of PCC on human blood samples (in vitro) and male Wistar rats tissues (in vivo). Histological analysis points out, for the highest applied power regime, the onset of detrimental thermal effects such as red cell lysis in blood samples and tissues damages in in-vivo experiments. Calorimetric bench tests performed on metallic targets show that the current coupled by the plasma on the substrate induces most of measured thermal loads through a resistive coupling. Furthermore, the distance between the PCC nozzle and the target is found to strongly affect the total power

    Subcutaneous Adipose Tissue Transcriptome Highlights Specific Expression Profiles in Severe Pediatric Obesity: A Pilot Study

    Get PDF
    The prevalence of pediatric obesity is rising rapidly worldwide, and "omic" approaches are helpful in investigating the molecular pathophysiology of obesity. This work aims to identify transcriptional differences in the subcutaneous adipose tissue (scAT) of children with overweight (OW), obesity (OB), or severe obesity (SV) compared with those of normal weight (NW). Periumbilical scAT biopsies were collected from 20 male children aged 1-12 years. The children were stratified into the following four groups according to their BMI z-scores: SV, OB, OW, and NW. scAT RNA-Seq analyses were performed, and a differential expression analysis was conducted using the DESeq2 R package. A pathways analysis was performed to gain biological insights into gene expression. Our data highlight the significant deregulation in both coding and non-coding transcripts in the SV group when compared with the NW, OW, and OB groups. A KEGG pathway analysis showed that coding transcripts were mainly involved in lipid metabolism. A GSEA analysis revealed the upregulation of lipid degradation and metabolism in SV vs. OB and SV vs. OW. Bioenergetic processes and the catabolism of branched-chain amino acids were upregulated in SV compared with OB, OW, and NW. In conclusion, we report for the first time that a significant transcriptional deregulation occurs in the periumbilical scAT of children with severe obesity compared with those of normal weight or those with overweight or mild obesity
    • …
    corecore