1,577 research outputs found

    Identification of a Candidate CD5 Homologue in the Amphibian Xenopus laevis

    Get PDF
    We identified a novel T cell Ag in the South African clawed toad (Xenopus laevis) by a mAb designated 2B1. This Ag is present in relatively high levels on most thymocytes, approximately 65% of splenocytes, 55% of PBL, and 65% of intestinal lymphocytes, but is rarely seen on IgM+ B cells in any of these tissues. Lymphocytes bearing the 2B1 Ag proliferate in response to stimulation with Con A or PHA, whereas the 2B1- lymphocytes are reactive to LPS. Biochemical analysis indicates that this Ag is a differentially phosphorylated glycoprotein of 71 to 82 kDa. The protein core of 64 kDa bears both N- and O-linked carbohydrate side chains. The amino-terminal protein sequence of the 2B1 Ag shares significant homology with both the macrophage scavenger receptor type 1 motif and the mammalian CD5/CD6 family. The biochemical characteristics and cellular distribution of the 2B1 Ag suggest that it represents the CD5 homologue in X. laevis. While T cells constitutively express this highly conserved molecule, Xenopus B cells acquire the CD5 homologue only when they are stimulated in the presence of T cell

    Identification of T-cell receptor a-chain genes in the chicken

    Get PDF
    T-cell receptor (TCR) -chain (TCR) and ß-chain (TCRß) genes are well characterized in mammals, while only TCRß genes have been identified in other vertebrates. To identify avian TCR genes, we used monoclonal anti-CD3 antibodies to isolate chicken TCR for peptide sequence analysis. Degenerate oligonucleotide probes were then used to isolate a candidate TCR cDNA clone that hybridized with a 1.7-kb mRNA species present only in ß T cells and in tissues populated by these cells. Southern blot analysis revealed gene rearrangement in thymocytes and ß T-cell lines. The TCR cDNA candidate encoded an openreading frame of 275 amino acids, the predicted variable (V)-, joining (J)-, and constant (C)-region amino acid sequences of which shared 40%, 60%, and 25% homology with corresponding mammalian sequences. A single C gene and 25 V genes were identified by using region-specific probes. The V cDNA probe isolated from a Vß1+ cell line reacted with transcripts from one of five Vß2+ cell lines, suggesting shared use of V genes by Vß1+ and Vß2+ T cells and the existence of other V gene families. A genomic V sequence was flanked by classical recombination signal sequences but, unlike previously defined V genes, the leader and V region were encoded by a single exon. The data indicate evolutionary conservation of the basic TCR gene structure in birds and mammal

    Expression of the immunoregulatory molecule FcRH4 defines a distinctive tissue-based population of memory B cells

    Get PDF
    The FcRH4 transmembrane molecule, a member of the Fc receptor homologue family, can potently inhibit B cell receptor (BCR) signaling. We show that cell surface expression of this immunoregulatory molecule is restricted to a subpopulation of memory B cells, most of which lack the classical CD27 marker for memory B cells in humans. The FcRH4+ and FcRH4− memory B cells have undergone comparable levels of immunoglobulin isotype switching and somatic hypermutation, while neither subpopulation expresses the transcription factors involved in plasma cell differentiation. The FcRH4+ memory cells are morphologically distinctive large lymphocytes that express the CD69, CD80, and CD86 cell activation markers. They are also shown to be poised to secrete high levels of immunoglobulins in response to stimulation with T cell cytokines, but they fail to proliferate in response either to BCR ligation or Staphylococcus aureus stimulation. A heightened expression of the CCR1 and CCR5 chemokine receptors may facilitate their preferential localization in lymphoid tissues near epithelial surfaces. Cell surface FcRH4 expression thus marks a unique population of memory B cells with distinctive morphology, functional capabilities, and tissue localization

    Apparent wave function collapse caused by scattering

    Full text link
    Some experimental implications of the recent progress on wave function collapse are calculated. Exact results are derived for the center-of-mass wave function collapse caused by random scatterings and applied to a range of specific examples. The results show that recently proposed experiments to measure the GRW effect are likely to fail, since the effect of naturally occurring scatterings is of the same form as the GRW effect but generally much stronger. The same goes for attempts to measure the collapse caused by quantum gravity as suggested by Hawking and others. The results also indicate that macroscopic systems tend to be found in states with (Delta-x)(Delta-p) = hbar/sqrt(2), but microscopic systems in highly tiltedly squeezed states with (Delta-x)(Delta-p) >> hbar.Comment: Final published version. 20 pages, Plain TeX, no figures. Online at http://astro.berkeley.edu/~max/collapse.html (faster from the US), from http://www.mpa-garching.mpg.de/~max/collapse.html (faster from Europe) or from [email protected]
    • …
    corecore