13,384 research outputs found
Music in the Sky Like Bombers: Representations of Airplanes in Interwar Futurist Music
Since its founding in 1909 by F. T. Marinetti, the artistic movement of futurism gathered momentum as a politically charged avant-garde that challenged tradition and day-to-day life while promoting nationalism, war, and complete artistic expression. Marinetti and his artistic movement followed fascisms’ slow march to power through multiple aesthetic phases, beginning with the study of movement through plastic dynamism (1909-1919), engaging with speed and controlled power through machine aesthetics (1920-1929), cumulating with the more mystical aeroaesthetics (1929-1944), which Marinetti described as “the daughter of fascist aviation and Italian Futurism.”
This posturing was not done merely in support of fascism. In 1929, Marinetti was elected to the Academy of Italy, serving within Mussolini’s government. It was then that he published the Futurist Manifesto of Aeropainting and relabeled his own free-words poetry as aeropoesia. In seeking to establish futurism as a national art, Marinetti recognized that his movement must give up the political provocation that so defined it; but in order to preserve the avant-garde identity of futurism, he had to resist Mussolini’s reactionary preferences for realist art. With the conflicting fascist and avant-garde impulses as a guide, this thesis diagnoses aeromusic with a split personality. I contend that the representation of airplanes in aeromusic like that of Mario Monachesi’s, functions as a floating signifier of Italian supremacy under fascism, making it useful fascist propaganda; while the compositional practices of geometricism and synthesis subtly pushed back against conservative tastes in hopes of restoring the avant-garde Italian culture that futurism enjoyed in its first two decades. Aerofuturism, an institutionalized futurism in the 1930s, was a far more postured polemic than the anarcho-fasci-syndicalist futurism of the 1910s: a slap on the wrist of fascist taste.
My research explores the music created by the most prominent composer of aeromusic, Mario Monahcesi, and places his aeromusic within the broader narrative of the futurists’ reluctant assimilation into fascist culture by creating an inoffensive avant-garde that used the airplane, a fascist symbol, as a means of furthering the futurist fascination with dynamism, synthesis, nationalism, and war, while subtly critiquing the conservative reactions of Il Duce that had increased along with Mussolini’s ties to Nazi Germany
Reduced healthcare utilisation following successful HCV treatment in HIV co-infected patients with mild liver disease
New direct-acting antivirals (DAA) for hepatitis C virus (HCV) infection have achieved high cure rates in many patient groups previously considered difficult-to-treat, including those HIV/HCV co-infected. The high price of these medications is likely to limit access to treatment, at least in the short term. Early treatment priority is likely to be given to those with advanced disease, but a more detailed understanding of the potential benefits in treating those with mild disease is needed. We hypothesized that successful HCV treatment within a co-infected population with mild liver disease would lead to a reduction in the use and costs of healthcare services in the 5 years following treatment completion. We performed a retrospective cohort study of HIV/HCV-co-infected patients without evidence of fibrosis/cirrhosis who received a course of HCV therapy between 2004 and 2013. Detailed analysis of healthcare utilization up to 5 years following treatment for each patient using clinical and electronic records was used to estimate healthcare costs. Sixty-three patients were investigated, of whom 48 of 63 (76.2%) achieved sustained virological response 12 weeks following completion of therapy (SVR12). Individuals achieving SVR12 incurred lower health utilization costs (£5000 per-patient) compared to (£10 775 per-patient) non-SVR patients in the 5 years after treatment. Healthcare utilization rates and costs in the immediate 5 years following treatment were significantly higher in co-infected patients with mild disease that failed to achieve SVR12. These data suggest additional value to achieving cure beyond the prevention of complications of disease
Pacific Hake, Merluccius productus, Autecology: A Timely Review
Pacific hake, Merluccius productus, the most abundant groundfish in the California Current Large Marine Ecosystem
(CCLME), is a species of both commercial significance, supporting a large international fishery, and ecological importance, connecting other species as both predator and prey. Coastal Pacific hake migrations are characterized by movements between northern summer feeding areas and southern winter spawning areas, with variations in annual abundance, distribution, and the extent of these movements
associated with varying climate-ocean conditions. In general, warm (cool) years with enhanced (reduced) stratification and poleward (equatorward) transport are
often related to good (poor) recruitment, increased (decreased) northward distribution, and reduced (enhanced) growth. However, the classic periodic pattern of annual migration and distribution may no longer be fully representative. Based on recent advances in the understanding of climate-ocean variability off the U.S. west
coast, we hypothesize that the annual movements of Pacific hake are more responsive to climate-ocean variability than previously thought, and further, that changes observed in Pacific hake distributions may reflect long-term changes in climate-ocean conditions in the CCLME. Therefore, an updated
model of these relations is key to effective monitoring and management of this stock, as well as to devising scenarios of future change in the CCLME as a result of climate
variations. The current state of knowledge of the relationship between the Pacific hake and its environment is reviewed, highlighting emerging ideas compared to those of the past, and priorities for future research are suggested
The 2016 Perseids
The Perseid meteor shower has been observed since ancient times. One of the most prolific annual showers, the Perseids have also been known to outburst. At least two spacecraft have suffered anomalies potentially caused by meteoroid impacts during Perseid outbursts. Olympus, an ESA telecommunications satellite, was likely impacted by a Perseid meteoroid during the 1993 outburst that ultimately led to the termination of the spacecraft's mission. Landsat-5, an imaging satellite jointly managed by NASA and the USGS, lost gyro stability during the peak of the Perseids in 2009. The Perseid meteor shower is expected to outburst again in 2016. Stream model predictions place the peak activity on the night of August 11-12 (UT) as the Earth passes through several old debris trails from parent comet 109P/Swift-Tuttle. Observing geometry favors Europe at the onset, but increased activity for about half a day means that North America is also well-placed for observations. A call for observations to characterize the stream and constrain numerical models is made. Modeling results, observing geometry, and spacecraft risk during the 2016 Perseids will be discussed
Recommendations for HER2 testing in the UK
Determining the HER2 status of breast carcinomas is a prerequisite for the use of the monoclonal antibody trastuzumab (Herceptin(R)), which has recently been licensed for the treatment of metastatic disease. This necessitates a test based on archival material. The preferred analyses are immunohistochemistry with fluorescent in situ hybridisation (FISH) as a follow up test for ambiguous results. Guidelines have been developed for standardised, well controlled procedures for the provision of reliable results. A group of three reference laboratories has been established to provide advice, quality assurance, and materials, where needed
Synthetic Observations of Simulated Radio Galaxies I: Radio and X-ray Analysis
We present an extensive synthetic observational analysis of numerically-
simulated radio galaxies designed to explore the effectiveness of conventional
observational analyses at recovering physical source properties. These are the
first numerical simulations with sufficient physical detail to allow such a
study. The present paper focuses on extraction of magnetic field properties
from nonthermal intensity information. Synchrotron and inverse-Compton
intensities provided meaningful information about distributions and strengths
of magnetic fields, although considerable care was called for. Correlations
between radio and X-ray surface brightness correctly revealed useful dynamical
relationships between particles and fields. Magnetic field strength estimates
derived from the ratio of X-ray to radio intensity were mostly within about a
factor of two of the RMS field strength along a given line of sight. When
emissions along a given line of sight were dominated by regions close to the
minimum energy/equipartition condition, the field strengths derived from the
standard power-law-spectrum minimum energy calculation were also reasonably
close to actual field strengths, except when spectral aging was evident.
Otherwise, biases in the minimum- energy magnetic field estimation mirrored
actual differences from equipartition. The ratio of the inverse-Compton
magnetic field to the minimum-energy magnetic field provided a rough measure of
the actual total energy in particles and fields in most instances, within an
order of magnitude. This may provide a practical limit to the accuracy with
which one may be able to establish the internal energy density or pressure of
optically thin synchrotron sources.Comment: 43 pages, 14 figures; accepted for publication in ApJ, v601 n2
February 1, 200
SU(3) breaking in hyperon transition vector form factors
We present a calculation of the SU(3)-breaking corrections to the hyperon
transition vector form factors to in heavy baryon chiral
perturbation theory with finite-range regularisation. Both octet and decuplet
degrees of freedom are included. We formulate a chiral expansion at the
kinematic point , which can be conveniently accessed
in lattice QCD. The two unknown low-energy constants at this point are
constrained by lattice QCD simulation results for the
and transition form factors. Hence we determine
lattice-informed values of at the physical point. This work constitutes
progress towards the precise determination of from hyperon
semileptonic decays
Spacecraft Risk Posed by the 2016 Perseid Outburst
The Perseids are one of the more prolific annual showers, known for high rates and for producing bright meteors. Outbursts of this shower have been noted in the 1860s, the early 1990s, 2004, and 2009, with the 1993 outburst being especially active (peak ZHR above 300). The 1993 Perseids also affected the space-faring nations, as the launch of the STS-51 mission was delayed by NASA until after the shower maximum due to an inability to predict the shower intensity, and the ESA telecommunications satellite Olympus suffered a mission-ending anomaly attributed to a static discharge caused by a Perseid impact [1]. Rates were again high (peak ZHR around 200) in 2009, when the NASA/USGS imaging satellite Landsat-5 experienced a gyro anomaly just before the shower peak; however in this case, the satellite was recovered and normal operations resumed one week later [2]. It is interesting to note that both spacecraft anomalies were not what is typically expected from meteoroid strikes, i.e., physical damage or an attitude displacement due to transfer of momentum. It would appear that the very fast Perseids (59 km s(sup -1) have a marked ability to produce plasma upon impact, which can then serve as a conductive path for discharge currents. The shower is expected to outburst again in 2016, and we present the results from the MSFC Meteoroid Stream Model [4], which predicts enhanced activity on a level similar to that of 2009 as the Earth passes through several debris trails on the night of August 11-12 (UT). We then compare our results to those of other modelers
An Exponential Luminous Efficiency Model for Hypervelocity Impact into Regolith
The flash of thermal radiation produced as part of the impact-crater forming process can be used to determine the energy of the impact if the luminous efficiency is known. From this energy the mass and, ultimately, the mass flux of similar impactors can be deduced. The luminous efficiency, eta, is a unique function of velocity with an extremely large variation in the laboratory range of under 6 km/s but a necessarily small variation with velocity in the meteoric range of 20 to 70 km/s. Impacts into granular or powdery regolith, such as that on the moon, differ from impacts into solid materials in that the energy is deposited via a serial impact process which affects the rate of deposition of internal (thermal) energy. An exponential model of the process is developed which differs from the usual polynomial models of crater formation. The model is valid for the early time portion of the process and focuses on the deposition of internal energy into the regolith. The model is successfully compared with experimental luminous efficiency data from both laboratory impacts and from lunar impact observations. Further work is proposed to clarify the effects of mass and density upon the luminous efficiency scaling factors. Keywords hypervelocity impact impact flash luminous efficiency lunar impact meteoroid
- …