3 research outputs found

    Bismuth trichloride as a molecular precursor for silicon doping

    Get PDF
    Dopant impurity species can be incorporated into the silicon (001) surface via the adsorption and dissociation of simple precursor molecules. Examples include phosphine (PH3), arsine (AsH3), and diborane (B2H6) for the incorporation of phosphorus, arsenic, and boron, respectively. Through exploitation of precursor surface chemistry, the spatial locations of these incorporated dopants can be controlled at the atomic scale via the patterning of a hydrogen lithographic resist layer using scanning tunneling microscopy (STM). There is strong interest in the spatial control of bismuth atoms incorporated into silicon for quantum technological applications; however, there is currently no known precursor for the incorporation of bismuth that is compatible with this STM-based lithographic method. Here, we explore the precursor chemistry (adsorption, diffusion, and dissociation) of bismuth trichloride (BiCl3) on Si(001). We show atomic-resolution STM images of BiCl3 exposed Si(001) surfaces at low coverage and combine this with density functional theory calculations to produce a model of the surface processes and the observed features. Our results show that, at room temperature, BiCl3 completely dissociates to produce bismuth ad-atoms, ad-dimers, and surface-bound chlorine, and we explain how BiCl3 is a strong candidate for a bismuth precursor compound compatible with lithographic patterning at the sub-nanometer scale

    Room Temperature Incorporation of Arsenic Atoms into the Germanium (001) Surface

    Get PDF
    Germanium has emerged as an exceptionally promising material for spintronics and quantum information applications, with significant fundamental advantages over silicon. However, efforts to create atomic-scale devices using donor atoms as qubits have largely focused on phosphorus in silicon. Positioning phosphorus in silicon with atomic-scale precision requires a thermal incorporation anneal, but the low success rate for this step has been shown to be a fundamental limitation prohibiting the scale-up to large-scale devices. Here, we present a comprehensive study of arsine (AsH3) on the germanium (001) surface. We show that, unlike any previously studied dopant precursor on silicon or germanium, arsenic atoms fully incorporate into substitutional surface lattice sites at room temperature. Our results pave the way for the next generation of atomic-scale donor devices combining the superior electronic properties of germanium with the enhanced properties of arsine/germanium chemistry that promises scale-up to large numbers of deterministically placed qubits

    Room Temperature Incorporation of Arsenic Atoms into the Germanium (001) Surface**

    Get PDF
    Germanium has emerged as an exceptionally promising material for spintronics and quantum information applications, with significant fundamental advantages over silicon. However, efforts to create atomic-scale devices using donor atoms as qubits have largely focused on phosphorus in silicon. Positioning phosphorus in silicon with atomic-scale precision requires a thermal incorporation anneal, but the low success rate for this step has been shown to be a fundamental limitation prohibiting the scale-up to large-scale devices. Here, we present a comprehensive study of arsine (AsH3) on the germanium (001) surface. We show that, unlike any previously studied dopant precursor on silicon or germanium, arsenic atoms fully incorporate into substitutional surface lattice sites at room temperature. Our results pave the way for the next generation of atomic-scale donor devices combining the superior electronic properties of germanium with the enhanced properties of arsine/germanium chemistry that promises scale-up to large numbers of deterministically placed qubits
    corecore