19 research outputs found

    Using MapMyFitness to place physical activity into neighborhood context

    Get PDF
    It is difficult to obtain detailed information on the context of physical activity at large geographic scales, such as the entire United States, as well as over long periods of time, such as over years. MapMyFitness is a suite of interactive tools for individuals to track theirworkouts online or using global positioning system in their phones or other wireless trackers. This method article discusses the use of physical activity data tracked using MapMyFitness to examine patterns over space and time. An overview of MapMyFitness, including data tracked, user information, and geographic scope, is explored. We illustrate the utility of MapMyFitness data using tracked physical activity by users in Winston-Salem, NC, USA between 2006 and 2013. Types of physical activities tracked are described, as well as the percent of activities occurring in parks. Strengths of MapMyFitness data include objective data collection, low participant burden, extensive geographic scale, and longitudinal series. Limitations include generalizability, behavioral change as the result of technology use, and potential ethical considerations. MapMyFitness is a powerful tool to investigate patterns of physical activity across large geographic and temporal scales

    Author Correction: Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function

    Get PDF
    These authors contributed equally: Gail Davies, Max Lam. These authors jointly supervised this work: Todd Lencz, Ian J. Deary

    Immunogenetics: changing the face of immunodeficiency

    No full text
    Tables 1 and 2 highlight the enormous advances that have been made in the definition of the molecular defects underlying primary immunodeficiencies in the past decade. The identification of SAP as the gene defective in XLP now completes the molecular bases of all the recognised X linked syndromes. Of the autosomally inherited syndromes, only the genes for DiGeorge syndrome, hyper-IgE, and perhaps most improtantly, common variable immunodeficiency remain to be elucidated. The major clinical benefits of this information have primarily been in offering more accurate and rapid molecular diagnoses. The ability to make a molecular diagnosis also increases the options for earlier definitive treatments such as bone marrow transplantation and somatic gene therapy. Finally, as illustrated by the studies on the functions of WASP and the γc/JAK-3 pathway, identification of the gene defect is the first step to understanding the molecular pathogenesis of the immunological abnormalities

    Produção de progesterona in vitro pelas células do corpo lúteo bovino ao longo da gestação In vitro progesterone production from bovine corpus luteum throughout gestation

    No full text
    O presente trabalho foi desenvolvido para testar a hipótese de que células luteínicas bovinas em cultivo, provenientes dos três terços de gestação, comportam-se da mesma maneira que células in vivo em relação à produção de P4. Foram coletadas amostras de corpos lúteos (CL) de 90 (n=3), 150 (n=3) e 210 (n=3) dias de gestação obtidos em abatedouro. Sob condições assépticas, as células foram mecanicamente dispersas e cultivadas em placas de 96 poços. Após 24 horas de cultivo foram feitas a lavagem dos poços e a adição do precursor pregnenolona. Os tratamentos foram realizados em octuplicata para cada tempo de tratamento (24, 48 e 96 horas) com três repetições de cada período gestacional. As amostras de meio de cultura e as células foram coletadas 24, 48 e 96 horas após adição do precursor e acondicionadas em freezer a -20ºC até o processamento. A progesterona foi dosada através de radioimunoensaio e o conteúdo protéico pelo método de Lowry. Os resultados foram analisados estatisticamente e considerados diferentes quando p<0.05. Foi observada maior produção de P4 aos 90 dias de gestação (35,277±0,075), posterior decréscimo aos 150 dias (28,820±0,231) e novo aumento aos 210 dias (32,777±0,099). A produção de P4 em células cultivadas por 24 horas foi maior (p<0,05) em células oriundas do grupo de 90 dias (2,912±0,047) quando comparado a 150 (2,669±0,137) e 210 dias (2,741±0,088). As 48 e 96 horas de cultivo, células luteínicas bovinas de 90 dias produziram mais P4 que células de 210 dias (2,934±0,029 e 2,976±0,121 respectivamente x 2,760±0,059 e 2,695±0,149, respectivamente; p<0,05), que por sua vez produziram mais do que células de 150 dias (2,334±0,084 para 48 horas e 2,205±0,136 para 96 horas). Aos 150 dias de gestação a produção de progesterona apresentou diminuição gradativa ao longo das 96 horas de cultivo. Essas diferenças podem ser explicadas pela expressão gênica diferencial de enzimas ou também de fatores presentes na cascata esteroidogênica de acordo com a idade gestacional. Este modelo de cultura celular luteínica poderá ser utilizado em estudos funcionais uma vez que o padrão de secreção de P4 mimetizou o que ocorre in vivo.<br>The aim was to test the hypothesis that cultivated bovine luteal cells from three different thirds of pregnancy behave the same way as in vivo luteal cells relative to P4 production. Corpus luteum samples from days 90 (n=3), 150 (n=3) and 210 (n=3) of pregnancy were obtained at a local slaughterhouse. Under aseptic conditions cells were mechanically dispersed and cultivated in a 96 wells-plate. After 24 hours of culture, cells were washed and the precursor pregnenolone was added. Experiments were conducted eight times for each studied time period (24, 48 and 96 h) and three times for each gestational age. Culture medium and cells were collected after 24, 48 and 96 hours of precursor addition and kept frozen at -20ºC until processing. Progesterone was measured by RIA and protein content by Lowry's method. Results were statistically analyzed and considered different when p <0.05. A higher P4 production was observed on day 90 of gestation (35.277±0.075), then this production was decreased at day 150 (28.820±0.231) and increased again at day 210 (32.777±0.099). After 24 hours of culture, luteal cells P4 production reached maximum values in the group of 90 days (2.912±0.047) when compared to 150 (2.669±0.137) and 210 days (2.741±0.088). At 48 and 96 hours of culture, bovine luteal cells from day 90 of gestation produced more P4 than cells from day 210 (2.934±0.029 and 2.976±0.121 respectively x 2.760±0.059 and 2.695±0.149, respectively; p<0.05), which in turn, produced more P4 than cells from day 150 (2.334±0.084 for 48 h and 2.205±0.136 for 96 h). Luteal cells from day 150 of gestation presented a decreasing P4 production throughout the 96 hours of culture. These differences could be explained by differential gene expression of enzymes and/or factors belonging to the esteroidogenic cascade in accordance to the gestational period. The established luteal cell culture model could be used for further functional studies once P4 secretion pattern in vitroresembled what occurs in vivo
    corecore