109 research outputs found

    Deciphering ascending thoracic aortic aneurysm hemodynamics in relation to biomechanical properties

    Get PDF
    The degeneration of the arterial wall at the basis of the ascending thoracic aortic aneurysm (ATAA) is a complex multifactorial process, which may lead to clinical complications and, ultimately, death. Individual genetic, biological or hemodynamic factors are inadequate to explain the heterogeneity of ATAA development/progression mechanisms, thus stimulating the analysis of their complex interplay. Here the disruption of the hemodynamic environment in the ATAA is investigated integrating patient-specific computational hemodynamics, CT-based in vivo estimation of local aortic stiffness and advanced fluid mechanics methods of analysis. The final aims are (1) deciphering the ATAA spatiotemporal hemodynamic complexity and its link to near-wall topological features, and (2) identifying the existing links between arterial wall degeneration and hemodynamic insult. Technically, two methodologies are applied to computational hemodynamics data, the wall shear stress (WSS) topological skeleton analysis, and the Complex Networks theory. The same analysis was extended to the healthy aorta. As main findings of the study, we report that: (1) different spatiotemporal heterogeneity characterizes the ATAA and healthy hemodynamics, that markedly reflect on their WSS topological skeleton features; (2) a link (stronger than canonical WSS-based descriptors) emerges between the variation of contraction/expansion action exerted by WSS on the endothelium along the cardiac cycle, and ATAA wall stiffness. The findings of the study suggest the use of advanced methods for a deeper understanding of the hemodynamics disruption in ATAA, and candidate WSS topological skeleton features as promising indicators of local wall degeneration

    Granulicatella spp., a Causative Agent of Infective Endocarditis in Children

    Get PDF
    Granulicatella spp. are non-motile, non-sporulating, facultatively anaerobic Gram-positive cocci. Throughout the literature, these organisms have been referred to by several names, such as “nutritionally deficient streptococci”, “vitamin-B dependent streptococci” and “pyridoxal-dependent streptococci”, because of their fastidious nutritional requirements, which can often make culture isolation challenging. Known to be a member of the normal microbiota of the human oral cavity and urogenital and intestinal tracts, similar to other streptococci, Granulicatella spp. can cause bacteremia, sepsis and infective endocarditis. Considering the difficulty in growing this organism on culture medium, the fact that it is now included among the bacteria known to be responsible for culture-negative infective endocarditis suggests that its pathogenic role could be highly underestimated. Moreover, being considered such a rare causative agent, it is not a target of standard antibiotic empiric treatment. We present a rare case of G. elegans endocarditis in a young child and review the medical literature on Granulicatella endocarditis in the pediatric population, with the aim of sharing knowledge about this microorganism, which can be challenging for a clinician who is not familiar with it

    Randomised trial comparing biweekly oxaliplatin plus oral capecitabine versus oxaliplatin plus i.v. bolus fluorouracil/leucovorin in metastatic colorectal cancer patients: results of the Southern Italy Cooperative Oncology study 0401

    Get PDF
    Oxaliplatin combined with either fluorouracil/leucovorin (OXAFAFU) or capecitabine (OXXEL) has a demonstrated activity in metastatic colorectal cancer patients. We aimed at comparing these two regimens in terms of response rate (RR), safety, progression-free survival (PFS), and quality of life (QoL) of patients

    The Stem Species of Our Species: A Place for the Archaic Human Cranium from Ceprano, Italy

    Get PDF
    One of the present challenges in the study of human evolution is to recognize the hominin taxon that was ancestral to Homo sapiens. Some researchers regard H. heidelbergensis as the stem species involved in the evolutionary divergence leading to the emergence of H. sapiens in Africa, and to the evolution of the Neandertals in Europe. Nevertheless, the diagnosis and hypodigm of H. heidelbergensis still remain to be clarified. Here we evaluate the morphology of the incomplete cranium (calvarium) known as Ceprano whose age has been recently revised to the mid of the Middle Pleistocene, so as to test whether this specimen may be included in H. heidelbergensis. The analyses were performed according to a phenetic routine including geometric morphometrics and the evaluation of diagnostic discrete traits. The results strongly support the uniqueness of H. heidelbergensis on a wide geographical horizon, including both Eurasia and Africa. In this framework, the Ceprano calvarium – with its peculiar combination of archaic and derived traits – may represent, better than other penecontemporaneous specimens, an appropriate ancestral stock of this species, preceding the appearance of regional autapomorphic features

    The Microcephalin Ancestral Allele in a Neanderthal Individual

    Get PDF
    Background: The high frequency (around 0.70 worlwide) and the relatively young age (between 14,000 and 62,000 years) of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1) locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans.1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal. Methodology/Principal Findings: Here we report the first PCR amplification and high- throughput sequencing of nuclear DNA at the microcephalin (MCPH1) locus from Neanderthal individual from Mezzena Rockshelter (Monti Lessini, Italy). We show that a well-preserved Neanderthal fossil dated at approximately 50,000 years B.P., was homozygous for the ancestral, non-D, allele. The high yield of Neanderthal mtDNA sequences of the studied specimen, the pattern of nucleotide misincorporation among sequences consistent with post-mortem DNA damage and an accurate control of the MCPH

    New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens

    Get PDF
    Fossil evidence points to an African origin of Homo sapiens from a group called either H. heidelbergensis or H. rhodesiensis. However, the exact place and time of emergence of H. sapiens remain obscure because the fossil record is scarce and the chronological age of many key specimens remains uncertain. In particular, it is unclear whether the present day ‘modern’ morphology rapidly emerged approximately 200 thousand years ago (ka) among earlier representatives of H. sapiens1 or evolved gradually over the last 400 thousand years2. Here we report newly discovered human fossils from Jebel Irhoud, Morocco, and interpret the affinities of the hominins from this site with other archaic and recent human groups. We identified a mosaic of features including facial, mandibular and dental morphology that aligns the Jebel Irhoud material with early or recent anatomically modern humans and more primitive neurocranial and endocranial morphology. In combination with an age of 315?±?34 thousand years (as determined by thermoluminescence dating)3, this evidence makes Jebel Irhoud the oldest and richest African Middle Stone Age hominin site that documents early stages of the H. sapiens clade in which key features of modern morphology were established. Furthermore, it shows that the evolutionary processes behind the emergence of H. sapiens involved the whole African continent
    • 

    corecore