14 research outputs found

    RPYS i/o: software demonstration of a web-based tool for the historiography and visualization of citation classics, sleeping beauties and research fronts

    No full text
    Reference Publication Year Spectroscopy (RPYS) and Multi-RPYS provide algorithmic approaches to reconstructing the intellectual histories of scientific fields. With this brief communication, we describe a technical advancement for developing research historiographies by introducing RPYS i/o, an online tool for performing standard RPYS and Multi-RPYS analyses interactively (at http://comins.leydesdorff.net/). The tool enables users to explore seminal works underlying a research field and to plot the influence of these seminal works over time. This suite of visualizations offers the potential to analyze and visualize the myriad of temporal dynamics of scientific influence, such as citation classics, sleeping beauties and the dynamics of research fronts. We demonstrate the features of the tool by analyzing—as an example—the references in documents published in the journal Philosophy of Science

    Citation algorithms for identifying research milestones driving biomedical innovation

    Get PDF
    Scientific activity plays a major role in innovation for biomedicine and healthcare. For instance, fundamental research on disease pathologies and mechanisms can generate potential targets for drug therapy. This co-evolution is punctuated by papers which provide new perspectives and open new domains. Despite the relationship between scientific discovery and biomedical advancement, identifying these research milestones that truly impact biomedical innovation can be difficult and is largely based solely on the opinions of subject matter experts. Here, we consider whether a new class of citation algorithms that identify seminal scientific works in a field, Reference Publication Year Spectroscopy (RPYS) and multi-RPYS, can identify the connections between innovation (e.g., therapeutic treatments) and the foundational research underlying them. Specifically, we assess whether the results of these analytic techniques converge with expert opinions on research milestones driving biomedical innovation in the treatment of Basal Cell Carcinoma. Our results show that these algorithms successfully identify the majority of milestone papers detailed by experts (Wong and Dlugosz in J Investig Dermatol 134(e1):E18–E22, 2014)—thereby validating the power of these algorithms to converge on independent opinions of seminal scientific works derived by subject matter experts. These advances offer an opportunity to identify scientific activities enabling innovation in biomedicine

    Identification of long-term concept-symbols among citations: Do common intellectual histories structure citation behavior?

    Get PDF
    “Citation classics” are not only highly cited, but also cited during several decades. We explore whether the peaks in the spectrograms generated by Reference Publication Years Spectroscopy (RPYS) indicate such long-term impact by comparing across RPYS for subsequent time intervals. Multi-RPYS enables us to distinguish between short-term citation peaks at the research front that decay within 10 years versus historically constitutive (long-term) citations that function as concept symbols. Using these constitutive citations, one is able to cluster document sets (e.g., journals) in terms of intellectually shared histories. We test this premise by clustering 40 journals in the Web of Science Category of Information and Library Science using multi-RPYS. It follows that RPYS can not only be used for retrieving roots of sets under study (cited), but also for algorithmic historiography of the citing sets. Significant references are historically rooted symbols among other citations that function as currency.<br/

    Cited References and Medical Subject Headings (MeSH) as Two Different Knowledge Representations:Clustering and Mappings at the Paper Level

    Get PDF
    For the biomedical sciences, the Medical Subject Headings (MeSH) make available a rich feature which cannot currently be merged properly with widely used citing/cited data. Here, we provide methods and routines that make MeSH terms amenable to broader usage in the study of science indicators: using Web-of-Science (WoS) data, one can generate the matrix of citing versus cited documents; using PubMed/MEDLINE data, a matrix of the citing documents versus MeSH terms can be generated analogously. The two matrices can also be reorganized into a 2-mode matrix of MeSH terms versus cited references. Using the abbreviated journal names in the references, one can, for example, address the question whether MeSH terms can be used as an alternative to WoS Subject Categories for the purpose of normalizing citation data. We explore the applicability of the routines in the case of a research program about the amyloid cascade hypothesis in Alzheimer’s disease. One conclusion is that referenced journals provide archival structures, whereas MeSH terms indicate mainly variation (including novelty) at the research front. Furthermore, we explore the option of using the citing/cited matrix for main-path analysis as a by-product of the software
    corecore