71 research outputs found
Microparticles as Immune Regulators in Infectious Disease – An Opinion
Despite their clear relationship to immunology, few existing studies have examined the potential role of microparticles (MP) in infectious disease. MP have a different size range from exosomes and apoptotic bodies, with which they are often grouped and arise by different mechanisms in association with inflammatory cytokine action or stress on the source cell. Infection with pathogens usually leads to the expression of a range of inflammatory cytokines and chemokines, as well as significant stress in both infected and uninfected cells. It is thus reasonable to infer that infection-associated inflammation also leads to MP production. MP are produced by most of the major cell types in the immune system, and appear to be involved at both innate and adaptive levels, potentially serving different functions in each. Thus, they do not appear to have a universal function; instead their functions are source- or stimulus-dependent, although likely to be primarily either pro- or anti-inflammatory. We argue that in infectious diseases, MP may be able to deliver antigen, derived from the biological cargo acquired from their cells of origin, to antigen-presenting cells. Another potential benefit of MP would be to transfer and/or disseminate phenotype and function to target cells. However, MP may also potentially be manipulated, particularly by intracellular pathogens, for survival advantage
Parasite-Derived Plasma Microparticles Contribute Significantly to Malaria Infection-Induced Inflammation through Potent Macrophage Stimulation
There is considerable debate as to the nature of the primary parasite-derived moieties that activate innate pro-inflammatory responses during malaria infection. Microparticles (MPs), which are produced by numerous cell types following vesiculation of the cellular membrane as a consequence of cell death or immune-activation, exert strong pro-inflammatory activity in other disease states. Here we demonstrate that MPs, derived from the plasma of malaria infected mice, but not naive mice, induce potent activation of macrophages in vitro as measured by CD40 up-regulation and TNF production. In vitro, these MPs induced significantly higher levels of macrophage activation than intact infected red blood cells. Immunofluorescence staining revealed that MPs contained significant amounts of parasite material indicating that they are derived primarily from infected red blood cells rather than platelets or endothelial cells. MP driven macrophage activation was completely abolished in the absence of MyD88 and TLR-4 signalling. Similar levels of immunogenic MPs were produced in WT and in TNF−/−, IFN-γ−/−, IL-12−/− and RAG-1−/− malaria-infected mice, but were not produced in mice injected with LPS, showing that inflammation is not required for the production of MPs during malaria infection. This study therefore establishes parasitized red blood cell-derived MPs as a major inducer of systemic inflammation during malaria infection, raising important questions about their role in severe disease and in the generation of adaptive immune responses
In vitro culture of Plasmodium berghei-ANKA maintains infectivity of mouse erythrocytes inducing cerebral malaria
<p>Abstract</p> <p>Background</p> <p>Infection with <it>Plasmodium berghei </it>is a widely used model of murine malaria and a powerful tool for reverse genetic and pathogenesis studies. However, the efficacy of <it>in vitro </it>reinvasion of erythrocytes is generally low, limiting <it>in vitro </it>studies.</p> <p>Methods</p> <p><it>Plasmodium berghei </it>ANKA-infected blood obtained from a susceptible infected mouse was cultured in various conditions and <it>in vitro </it>parasitaemia was measured every day to evaluate the rate of reinvasion.</p> <p>Results</p> <p>High quality culture media were used and reinvasion rates were improved by vigorous orbital shaking of the flask and increasing density of the medium with gelatin.</p> <p>Discussion</p> <p>Using these settings, reinvasion of normal mouse erythrocytes by the parasite was obtained <it>in vitro </it>over two weeks with preservation of the infectivity <it>in vivo</it>.</p
HDL Interfere with the Binding of T Cell Microparticles to Human Monocytes to Inhibit Pro-Inflammatory Cytokine Production
BACKGROUND: Direct cellular contact with stimulated T cells is a potent mechanism that induces cytokine production in human monocytes in the absence of an infectious agent. This mechanism is likely to be relevant to T cell-mediated inflammatory diseases such as rheumatoid arthritis and multiple sclerosis. Microparticles (MP) generated by stimulated T cells (MPT) display similar monocyte activating ability to whole T cells, isolated T cell membranes, or solubilized T cell membranes. We previously demonstrated that high-density lipoproteins (HDL) inhibited T cell contact- and MPT-induced production of IL-1beta but not of its natural inhibitor, the secreted form of IL-1 receptor antagonist (sIL-1Ra).
METHODOLOGY/PRINCIPAL FINDINGS: Labeled MPT were used to assess their interaction with monocytes and T lymphocytes by flow cytometry. Similarly, interactions of labeled HDL with monocytes and MPT were assessed by flow cytometry. In parallel, the MPT-induction of IL-1beta and sIL-1Ra production in human monocytes and the effect of HDL were assessed in cell cultures. The results show that MPT, but not MP generated by activated endothelial cells, bond monocytes to trigger cytokine production. MPT did not bind T cells. The inhibition of IL-1beta production by HDL correlated with the inhibition of MPT binding to monocytes. HDL interacted with MPT rather than with monocytes suggesting that they bound the activating factor(s) of T cell surface. Furthermore, prototypical pro-inflammatory cytokines and chemokines such as TNF, IL-6, IL-8, CCL3 and CCL4 displayed a pattern of production induced by MPT and inhibition by HDL similar to IL-1beta, whereas the production of CCL2, like that of sIL-1Ra, was not inhibited by HDL.
CONCLUSIONS/SIGNIFICANCE: HDL inhibit both MPT binding to monocytes and the MPT-induced production of some but not all cytokines, shedding new light on the mechanism by which HDL display their anti-inflammatory functions
Plasmodium falciparum Adhesion on Human Brain Microvascular Endothelial Cells Involves Transmigration-Like Cup Formation and Induces Opening of Intercellular Junctions
Cerebral malaria, a major cause of death during malaria infection, is characterised by the sequestration of infected red blood cells (IRBC) in brain microvessels. Most of the molecules implicated in the adhesion of IRBC on endothelial cells (EC) are already described; however, the structure of the IRBC/EC junction and the impact of this adhesion on the EC are poorly understood. We analysed this interaction using human brain microvascular EC monolayers co-cultured with IRBC. Our study demonstrates the transfer of material from the IRBC to the brain EC plasma membrane in a trogocytosis-like process, followed by a TNF-enhanced IRBC engulfing process. Upon IRBC/EC binding, parasite antigens are transferred to early endosomes in the EC, in a cytoskeleton-dependent process. This is associated with the opening of the intercellular junctions. The transfer of IRBC antigens can thus transform EC into a target for the immune response and contribute to the profound EC alterations, including peri-vascular oedema, associated with cerebral malaria
Dynamics of Sticky Information and Sticky Price Models in a New Keynesian DSGE Framework
Recent literature on monetary policy analysis extensively uses the sticky price model of price adjustment in a New Keynesian Macroeconomic framework. This price setting model, however, has been criticized for producing implausible results regarding inflation and output dynamics. This paper examines and compares dynamic responses of the sticky price and sticky information
models to a cost-push shock in a New Keynesian DSGE framework. It finds that the sticky information model produces more reasonable dynamics through lagged, gradual and hump-shaped responses to a shock as observed in data. However, these responses depend on the persistence of the shock
Real-Time Imaging Reveals the Dynamics of Leukocyte Behaviour during Experimental Cerebral Malaria Pathogenesis
During experimental cerebral malaria (ECM) mice develop a lethal neuropathological syndrome associated with microcirculatory dysfunction and intravascular leukocyte sequestration. The precise spatio-temporal context in which the intravascular immune response unfolds is incompletely understood. We developed a 2-photon intravital microscopy (2P-IVM)-based brain-imaging model to monitor the real-time behaviour of leukocytes directly within the brain vasculature during ECM. Ly6Chi monocytes, but not neutrophils, started to accumulate in the blood vessels of Plasmodium berghei ANKA (PbA)-infected MacGreen mice, in which myeloid cells express GFP, one to two days prior to the onset of the neurological signs (NS). A decrease in the rolling speed of monocytes, a measure of endothelial cell activation, was associated with progressive worsening of clinical symptoms. Adoptive transfer experiments with defined immune cell subsets in recombinase activating gene (RAG)-1-deficient mice showed that these changes were mediated by Plasmodium-specific CD8+ T lymphocytes. A critical number of CD8+ T effectors was required to induce disease and monocyte adherence to the vasculature. Depletion of monocytes at the onset of disease symptoms resulted in decreased lymphocyte accumulation, suggesting reciprocal effects of monocytes and T cells on their recruitment within the brain. Together, our studies define the real-time kinetics of leukocyte behaviour in the central nervous system during ECM, and reveal a significant role for Plasmodium-specific CD8+ T lymphocytes in regulating vascular pathology in this disease. © 2014 Pai et al
Extracellular vesicles, from pathogenesis to biomarkers: the case for cerebral malaria
Malaria infections due to the Plasmodium parasite remains a major global health problem. Plasmodium falciparum is responsible for majority of the severe cases, resulting in more than 400,000 deaths per annum. Extracellular vesicles (EVs) released by vascular cells, including parasitised erythrocytes, have been detected with increased levels in patients with malaria. EVs are thought to be involved in the pathogenesis of severe malaria, particularly cerebral malaria, and represent a unique molecular signature for different forms of the infection. In this review, we will cover the known effects of EVs on the vasculature and discuss their potential use as a biomarker of disease severity
Differential plasma microvesicle and brain profiles of microRNA in experimental cerebral malaria
Abstract Background Cerebral malaria (CM) is a fatal complication of Plasmodium infection, mostly affecting children under the age of five in the sub-Saharan African region. CM pathogenesis remains incompletely understood, although sequestered infected red blood cells, inflammatory cells aggregating in the cerebral blood vessels, and the microvesicles (MV) that they release in the circulation, have been implicated. Plasma MV numbers increase in CM patients and in the murine model, where blocking their release, genetically or pharmacologically, protects against brain pathology, suggesting a role of MV in CM neuropathogenesis. In this work, the microRNA (miRNA) cargo of MV is defined for the first time during experimental CM with the overarching hypothesis that this characterization could help understand CM pathogenesis. Results The change in abundance of miRNA was studied following infection of CBA mice with Plasmodium berghei ANKA strain (causing experimental CM), and Plasmodium yoelii, which causes severe malaria without cerebral complications, termed non-CM (NCM). miRNA expression was analyzed using microarrays to compare MV from healthy (NI) and CM mice, yielding several miRNA of interest. The differential expression profiles of these selected miRNA (miR-146a, miR-150, miR-193b, miR-205, miR-215, miR-467a, and miR-486) were analyzed in mouse MV, MV-free plasma, and brain tissue by quantitative reverse transcription PCR (RT-qPCR). Two miRNA—miR-146a and miR-193b—were confirmed as differentially abundant in MV from CM mice, compared with NCM and NI mice. These miRNA have been shown to play various roles in inflammation, and their dysregulation during CM may be critical for triggering the neurological syndrome via regulation of their potential downstream targets. Conclusions These data suggest that, in the mouse model at least, miRNA may have a regulatory role in the pathogenesis of severe malaria
- …