12 research outputs found

    Permanent magnet quadrupoles for the CLIC Drive Beam decelerator

    No full text
    STFC in collaboration with CERN has developed a new type of adjustable permanent magnet based quadrupole for the CLIC Drive Beam Decelerator. It uses vertical movement of the permanent magnets to achieve an integrated gradient range of 3.6-14.6T, which will allow it to be used for the first 60% of the decelerator line. Construction of a prototype of this magnet has begun; following this, it will be measured magnetically at CERN and Daresbury Laboratory

    The ZEPTO Dipole: Zero Power Tuneable Optics for CLIC

    No full text
    Permanent magnet (PM) based systems create a significantly reduced power consumption compared to conventional room temperature electromagnets. STFC and CERN are investigating the feasibility of using tuneable PM systems to reduce high electricity and water-cooling costs; plus the associated large scale infrastructure burden in the proposed CLIC accelerator. This collaboration has previously resulted in the development of two tuneable PM Quadrupole systems. We present here a continuation of this work in the development of a pure PM C-Dipole with a tuning range of over 50%. A prototype has been simulated and constructed using a single 50x40x20 cm block of NdFeB which slides horizontally to provide tuning. We outline the design, construction and measurement of a prototype dipole and discuss its suitability as a replacement for electromagnetic systems. Issues including field homogeneity over a large tuning range and the management of high magnetic forces are addressed

    Design and Measurement of a Low-Energy Tunable Permanent Magnet Quadrupole Prototype

    No full text
    The 42 km long CLIC Drive Beam Decelerator (DBD) will decelerate beams of el ectrons from 2.4 GeV to 240 MeV. ASTeC in collaboration with CERN has developed a novel type of tunable permanent magnet quadrupole for the DBD. Two versions of the design were produced, for the high energy and low energy ends of DBD respectively. This paper outlines the design of low energy version which has a tuning range of 3.5-43 T/m. A prototype was built at Daresbury Laboratory in 2013, and extensive measurements were carried out at Daresbury Laboratory. The 42 km long CLIC Drive Beam Decelerator (DBD) will decelerate beams of electrons from 2.4 GeV to 240 MeV. ASTeC in collaboration with CERN has developed a novel type of tunable permanent magnet quadrupole for the DBD. Two versions of the design were produced, for the high-energy and low-energy ends of the DBD respectively. This paper outlines the design of the low-energy version, which has a tuning range of 3.5-43 T/m. A prototype was built at Daresbury Laboratory (DL) in 2013, and extensive magnetic measurements were carried out at DL
    corecore