2,099 research outputs found

    Neutron Ionization of Helium near the Neutron-Alpha Particle Collision Resonance

    Get PDF
    Neutron-impact single and double ionization cross sections of the He atom are calculated near the neutron-alpha particle collision resonance. Calculations using the time-dependent close-coupling method for total and differential cross sections are made at 8 incident neutron energies ranging from 250 to 2000 keV. At the resonance energy peak the double ionization cross sections unexpectedly become larger than the single ionization cross sections. This finding appears to be related to the high velocity of the recoiling alpha particle, which makes it unlikely that the atomic electrons can recombine with the alpha particle nucleus, enhancing the double ionization cross section.Peer ReviewedPostprint (author's final draft

    Spitzer observations of extragalactic H II regions - III. NGC 6822 and the hot star, H II region connection

    Full text link
    Using the short-high module of the Infrared Spectrograph on the Spitzer Space Telescope, we have measured the [S IV] 10.51, [Ne II] 12.81, [Ne III] 15.56, and [S III] 18.71-micron emission lines in nine H II regions in the dwarf irregular galaxy NGC 6822. These lines arise from the dominant ionization states of the elements neon (Ne++^{++}, Ne+^+) and sulphur (S3+^{3+}, S++^{++}), thereby allowing an analysis of the neon to sulphur abundance ratio as well as the ionic abundance ratios Ne+^+/Ne++^{++} and S3+^{3+}/S++^{++}. By extending our studies of H II regions in M83 and M33 to the lower metallicity NGC 6822, we increase the reliability of the estimated Ne/S ratio. We find that the Ne/S ratio appears to be fairly universal, with not much variation about the ratio found for NGC 6822: the median (average) Ne/S ratio equals 11.6 (12.2±\pm0.8). This value is in contrast to Asplund et al.'s currently best estimated value for the Sun: Ne/S = 6.5. In addition, we continue to test the predicted ionizing spectral energy distributions (SEDs) from various stellar atmosphere models by comparing model nebulae computed with these SEDs as inputs to our observational data, changing just the stellar atmosphere model abundances. Here we employ a new grid of SEDs computed with different metallicities: Solar, 0.4 Solar, and 0.1 Solar. As expected, these changes to the SED show similar trends to those seen upon changing just the nebular gas metallicities in our plasma simulations: lower metallicity results in higher ionization. This trend agrees with the observations.Comment: 22 pages, 13 figures. To be published in MNRAS. reference added and typos fixed. arXiv admin note: text overlap with arXiv:0804.0828, which is paper II by Rubin et al. (2008

    Benchmark nonperturbative calculations for the electron-impact ionization of Li(2s) and Li(2p)

    Get PDF
    Three independent nonperturbative calculations are reported for the electron-impact ionization of both the ground and first excited states of the neutral lithium atom. The time-dependent close-coupling, the R matrix with pseudostates, and the converged close-coupling methods yield total integral cross sections that are in very good agreement with each other, while perturbative distorted-wave calculations yield cross sections that are substantially higher. These nonperturbative calculations provide a benchmark for the continued development of electron-atom experimental methods designed to measure both ground and excited state ionization
    • …
    corecore