25 research outputs found

    Cross-reactive human B cell and T cell epitopes between influenza A and B viruses

    Get PDF
    Influenza A and B viruses form different genera, which were originally distinguished by antigenic differences in their nucleoproteins and matrix 1 proteins. Cross-protection between these two genera has not been observed in animal experiments, which is consistent with the low homology in viral proteins common to both viruses except for one of three polymerase proteins, polymerase basic 1 (PB1). Recently, however, antibody and CD4+ T cell epitopes conserved between the two genera were identified in humans. A protective antibody epitope was located in the stalk region of the surface glycoprotein, hemagglutinin, and a CD4+ T cell epitope was located in the fusion peptide of the hemagglutinin. The fusion peptide was also found to contain antibody epitopes in humans and animals. A short stretch of well-conserved peptide was also identified in the other surface glycoprotein, neuraminidase, and antibodies binding to this peptide were generated by peptide immunization in rabbits. Although PB1, the only protein which has relatively high overall sequence homology between influenza A and B viruses, is not considered an immunodominant protein in the T cell responses to influenza A virus infection, amino acid sequence comparisons show that a considerable number of previously identified T cell epitopes in the PB1 of influenza A viruses are conserved in the PB1 of influenza B viruses. These data indicate that B and T cell cross-reactivity exists between influenza A and B viruses, which may have modulatory effects on the disease process and recovery. Although the antibody titers and the specific T cell frequencies induced by natural infection or standard vaccination may not be high enough to provide cross protection in humans, it might be possible to develop immunization strategies to induce these cross-reactive responses more efficiently

    Telomere length dynamics in human memory T cells specific for viruses causing acute or latent infections

    Get PDF
    BACKGROUND: Declining telomere length (TL) is associated with T cell senescence. While TL in naive and memory T cells declines with increasing age, there is limited data on TL dynamics in virus-specific memory CD4+ T cells in healthy adults. We combined BrdU-labeling of virus-stimulated T cells followed with flow cytometry-fluorescent in situ hybridization for TL determination. We analyzed TL in T cells specific for several virus infections: non-recurring acute (vaccinia virus, VACV), recurring-acute (influenza A virus, IAV), and reactivating viruses (varicella-zoster virus, VZV, and cytomegalovirus, CMV) in 10 healthy subjects. Additionally, five subjects provided multiple blood samples separated by up to 10 years. RESULTS: VACV- and CMV-specific T cells had longer average TL than IAV-specific CD4+ T cells. Although most virus-specific cells were CD45RA-, we observed a minor population of BrdU+ CD45RA+ T cells characterized by long telomeres. Longitudinal analysis demonstrated a slow decline in average TL in virus-specific T cells. However, in one subject, VZV reactivation led to an increase in average TL in VZV-specific memory T cells, suggesting a conversion of longer TL cells from the naive T cell repertoire. CONCLUSIONS: TLs in memory CD4+ T cells in otherwise healthy adults are heterogeneous and follow distinct virus-specific kinetics. These findings suggests that the distribution of TL and the creation and maintenance of long TL memory T cells could be important for the persistence of long-lived T cell memory

    Non-neutralizing antibody responses following A(H1N1)pdm09 influenza vaccination with or without AS03 adjuvant system

    Get PDF
    BACKGROUND: Non-neutralizing antibodies inducing complement-dependent lysis (CDL) and antibody-dependent cell-mediated cytotoxicity (ADCC) activity may contribute to protection against influenza infection. We investigated CDL and ADCC responses in healthy adults randomized to receive either non-adjuvanted or AS03-adjuvanted monovalent A(H1N1)pdm09 vaccine (containing 15 microg/3.75 mug of hemagglutinin, respectively) on a 2-dose schedule 21 days apart. METHODS: We conducted an exploratory analysis of a subset of 106 subjects having no prior history of A(H1N1)pdm09 infection or seasonal influenza vaccination enrolled in a previously reported study (NCT00985673). Antibody responses against the homologous A/California/7/2009 (H1N1) vaccine strain and a related A/Brisbane/59/2007 (H1N1) seasonal influenza strain were analyzed up to Day 42. RESULTS: Baseline seropositivity determined with hemagglutination inhibition (HI), CDL and ADCC antibody titers against viral strains was high; A/California/7/2009 (HI [40.4-48.1%]; CDL [34.6-36.0%]; ADCC [92.1-92.3%]); A/Brisbane/59/2007 (HI [73.1-88.9%]; CDL [38.0-42.0%]; ADCC [86.8-97.0%]). CDL seropositivity increased following vaccination with both adjuvanted and non-adjuvanted formulations (A/California/7/2009 [95.9-100%]; A/Brisbane/59/2007 [75.5-79.6%]). At Day 21, increases in CDL and ADCC antibody geometric mean titers against both strains were observed for both formulations. After 2 doses of AS03-adjuvanted vaccine, vaccine responses of 95.8% ( \u3e /=9-fold increase from baseline in CDL titers) and 34.3% ( \u3e /=16-fold increase from baseline in ADCC titers) were seen against A/California/7/2009; and 22.4% and 42.9%, respectively, against A/Brisbane/59/2007. Vaccine responses after 2 doses of the non-adjuvanted vaccine were broadly similar. CONCLUSIONS: Broadly comparable non-neutralizing immune responses were observed following vaccination with non-adjuvanted and AS03-adjuvanted A(H1N1)pdm09 formulations; including activity against a related vaccine strain

    Interaction of a dengue virus NS1-derived peptide with the inhibitory receptor KIR3DL1 on natural killer cells

    Get PDF
    Killer immunoglobulin-like receptors (KIRs) interact with human leucocyte antigen (HLA) class I ligands and play a key role in the regulation and activation of NK cells. The functional importance of KIR-HLA interactions has been demonstrated for a number of chronic viral infections, but to date only a few studies have been performed in the context of acute self-limited viral infections. During our investigation of CD8(+) T cell responses to a conserved HLA-B57-restricted epitope derived from dengue virus (DENV) non-structural protein-1 (NS1), we observed substantial binding of the tetrameric complex to non-T/non-B lymphocytes in peripheral blood mononuclear cells (PBMC) from a long-standing clinical cohort in Thailand. We confirmed binding of the NS1 tetramer to CD56(dim) NK cells, which are known to express KIRs. Using depletion studies and KIR-transfected cell lines, we demonstrated further that the NS1 tetramer bound the inhibitory receptor KIR3DL1. Phenotypical analysis of PBMC from HLA-B57(+) subjects with acute DENV infection revealed marked activation of NS1 tetramer-binding natural killer (NK) cells around the time of defervescence in subjects with severe dengue disease. Collectively, our findings indicate that subsets of NK cells are activated relatively late in the course of acute DENV illness and reveal a possible role for specific KIR-HLA interactions in the modulation of disease outcomes

    Pandemic influenza: implications for preparation and delivery of critical care services

    No full text
    In a 5-week span during the 1918 influenza A pandemic, more than 2000 patients were admitted to Cook County Hospital in Chicago, with a diagnosis of either influenza or pneumonia; 642 patients, approximately 31% of those admitted, died, with deaths occurring predominantly in patients of age 25 to 30 years. This review summarizes basic information on the biology, epidemiology, control, treatment and prevention of influenza overall, and then addresses the potential impact of pandemic influenza in an intensive care unit setting. Issues that require consideration include workforce staffing and safety, resource management, alternate sites of care surge of patients, altered standards of care, and crisis communication

    Age and different influenza viruses

    No full text
    Comment on: Age distribution of cases caused by different influenza viruses. [Lancet Infect Dis. 2013

    High Antibody-Dependent Cellular Cytotoxicity Antibody Titers to H5N1 and H7N9 Avian Influenza A Viruses in Healthy US Adults and Older Children

    No full text
    Human influenza is a highly contagious acute respiratory illness that is responsible for significant morbidity and excess mortality worldwide. In addition to neutralizing antibodies, there are antibodies that bind to influenza virus-infected cells and mediate lysis of the infected cells by natural killer (NK) cells (antibody-dependent cellular cytotoxicity [ADCC]) or complement (complement-dependent lysis [CDL]). We analyzed sera obtained from 16 healthy adults (18-63 years of age), 52 children (2-17 years of age), and 10 infants (0.75-1 year of age) in the United States, who were unlikely to have been exposed to the avian H7N9 subtype of influenza A virus, by ADCC and CDL assays. As expected, none of these sera had detectable levels of hemagglutination-inhibiting antibodies against the H7N9 virus, but we unexpectedly found high titers of ADCC antibodies to the H7N9 subtype virus in all sera from adults and children aged \u3e /=8 years

    Comparison of complement dependent lytic, hemagglutination inhibition and microneutralization antibody responses in influenza vaccinated individuals

    No full text
    Virus specific, non-neutralizing antibodies such as complement dependent lytic (CDL) antibodies may reduce morbidity following infection through the clearance of infectious virus particles and infected cells. We examined hemagglutination inhibition (HAI), microneutralization (MN) and CDL antibody titers to influenza A H1 and H3 virus strains in 23 healthy young adults who received the 2005-2006 trivalent inactivated influenza vaccine. Post vaccination, we detected statistically significant increases in MN and CDL antibodies but not in HAI antibodies. Statistically significantly higher fold increases in CDL antibodies post vaccination were seen compared with MN and HAI antibodies post vaccination. However, the overall fold increases were modest, likely related to the fact that most of the subjects had received influenza vaccination previously. This study showed that influenza vaccination is not only capable of increasing the level of antibodies that neutralize virus but also antibodies that can cause lysis of infected cells. The biological significance of these CDL antibodies merits further investigation in clinical studies

    Human cytotoxic T lymphocyte responses to live attenuated 17D yellow fever vaccine: identification of HLA-B35-restricted CTL epitopes on nonstructural proteins NS1, NS2b, NS3, and the structural protein E

    Get PDF
    Yellow fever virus (YFV) is a re-emerging problem despite the existence of an effective live-attenuated vaccine. The induction of YFV-neutralizing antibodies undoubtedly contributes to vaccine efficacy, but T lymphocyte responses to YFV likely play a role in long-term efficacy. We studied the T lymphocyte responses to YFV in four vaccinees. Proliferation and cytolytic responses to YFV were demonstrated in all subjects. We isolated 13 YFV-specific CD8(+) CTL lines that recognized epitopes on the E, NS1, NS2b, and NS3 proteins; eight CTL lines were HLA-B35-restricted. YFV-specific T cell responses were detectable by IFN gamma ELISPOT assays 14 days postvaccination, with T cell frequencies sustained for up to 19 months. To our knowledge, this is the first report of human T lymphocyte responses following YFV vaccination. These results indicate that the live 17D YFV vaccine induced CD8(+) T cell responses directed against at least four different HLA-B35-restricted YFV epitopes
    corecore