70 research outputs found

    Are proton pump inhibitors the first choice for acute treatment of gastric ulcers? A meta analysis of randomized clinical trials

    Get PDF
    BACKGROUND: Gastric ulcers are a frequent problem in the United States. Proton pump inhibitors have been shown to increase healing rates and improve clinical symptoms. The objective of this study is to compare gastric ulcer healing rates for patients treated with a proton pump inhibitor (PPI) (omeprazole, rabeprazole, pantoprazole, or lansoprazole), an histamine 2- receptor antagonist (ranitidine) or placebo. METHODS: A literature search was conducted to identify randomized, controlled clinical trials that included a PPI in at least one treatment arm and assessed the gastric ulcer healing rates endoscopically. The healing rates were estimated for each treatment at specific time points, and Rate Ratios (RR) and 95% confidence intervals (CI) were estimated for each trial. RESULTS: Sixteen trials met the inclusion criteria: four compared a PPI versus placebo, nine compared a PPI versus ranitidine (no trials of rabeprazole versus ranitidine met the inclusion criteria), and three compared a newer PPI (lansoprazole, pantoprazole or rabeprazole) versus omeprazole. In relation to ranitidine, the pooled RR of PPIs (lansoprazole, omeprazole and pantoprazole) was 1.33 (95% CI 1.24 to 1.42) at four weeks. In each trial, greater improvement in the studied clinical symptoms was found with the newer PPIs (rabeprazole, pantoprazole and lansoprazole) when compared to omeprazole. CONCLUSION: In this study treatment with PPIs resulted in higher healing rates than ranitidine or placebo. This evidence suggests that the first choice for gastric ulcer treatment for the greater relief of symptoms is one of the newer PPIs

    The History, Relevance, and Applications of the Periodic System in Geochemistry

    Get PDF
    Geochemistry is a discipline in the earth sciences concerned with understanding the chemistry of the Earth and what that chemistry tells us about the processes that control the formation and evolution of Earth materials and the planet itself. The periodic table and the periodic system, as developed by Mendeleev and others in the nineteenth century, are as important in geochemistry as in other areas of chemistry. In fact, systemisation of the myriad of observations that geochemists make is perhaps even more important in this branch of chemistry, given the huge variability in the nature of Earth materials – from the Fe-rich core, through the silicate-dominated mantle and crust, to the volatile-rich ocean and atmosphere. This systemisation started in the eighteenth century, when geochemistry did not yet exist as a separate pursuit in itself. Mineralogy, one of the disciplines that eventually became geochemistry, was central to the discovery of the elements, and nineteenth-century mineralogists played a key role in this endeavour. Early “geochemists” continued this systemisation effort into the twentieth century, particularly highlighted in the career of V.M. Goldschmidt. The focus of the modern discipline of geochemistry has moved well beyond classification, in order to invert the information held in the properties of elements across the periodic table and their distribution across Earth and planetary materials, to learn about the physicochemical processes that shaped the Earth and other planets, on all scales. We illustrate this approach with key examples, those rooted in the patterns inherent in the periodic law as well as those that exploit concepts that only became familiar after Mendeleev, such as stable and radiogenic isotopes

    Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health

    Full text link

    A tectonically driven Ediacaran oxygenation event.

    Get PDF
    The diversification of complex animal life during the Cambrian Period (541-485.4 Ma) is thought to have been contingent on an oxygenation event sometime during ~850 to 541 Ma in the Neoproterozoic Era. Whilst abundant geochemical evidence indicates repeated intervals of ocean oxygenation during this time, the timing and magnitude of any changes in atmospheric pO₂ remain uncertain. Recent work indicates a large increase in the tectonic CO₂ degassing rate between the Neoproterozoic and Paleozoic Eras. We use a biogeochemical model to show that this increase in the total carbon and sulphur throughput of the Earth system increased the rate of organic carbon and pyrite sulphur burial and hence atmospheric pO₂. Modelled atmospheric pO₂ increases by ~50% during the Ediacaran Period (635-541 Ma), reaching ~0.25 of the present atmospheric level (PAL), broadly consistent with the estimated pO₂ > 0.1-0.25 PAL requirement of large, mobile and predatory animals during the Cambrian explosion
    corecore