9 research outputs found
Cent scientifiques répliquent à SEA (Suppression des Expériences sur l’Animal vivant) et dénoncent sa désinformation
La lutte contre la maltraitance animale est sans conteste une cause moralement juste. Mais elle ne justifie en rien la désinformation à laquelle certaines associations qui s’en réclament ont recours pour remettre en question l’usage de l’expérimentation animale en recherche
Contrôle du développement des canaux biliaires par la voie de signalisation TGF-beta et le facteur de transcription Sox9
info:eu-repo/semantics/nonPublishe
Bile duct development occurs via a new mode of tubulogenesis involving TGF-beta
info:eu-repo/semantics/nonPublishe
Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9.
A number of diseases are characterized by defective formation of the intrahepatic bile ducts. In the embryo, hepatoblasts differentiate to cholangiocytes, which give rise to the bile ducts. Here, we investigated duct development in mouse liver and characterized the role of the SRY-related HMG box transcription factor 9 (SOX9).Comparative StudyJournal ArticleResearch Support, N.I.H. ExtramuralResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
Vascular endothelial growth factor-loaded injectable hydrogel enhances plasticity in the injured spinal cord
We hypothesized that VEGF-containing hydrogels that gelify in situ following injection into a traumatized spinal cord, could stimulate spinal cord regeneration. Injectable hydrogels composed of 0.5% MVG alginate, supplemented or not with fibrinogen, were used. The addition of fibrinogen to alginate had no effect on cell proliferation in vitro but supported neurite growth ex vivo. When injected into a rat spinal cord in a hemisection model, alginate supplemented with fibrinogen was well tolerated. The release of VEGF that was incorporated into the hydrogel was influenced by the VEGF formulation (encapsulated in microspheres or in nanoparticles or in solution (free)). A combination of free VEGF and VEGF-loaded nanoparticles was mixed with alginate:fibrinogen and injected into the lesion of the spinal cord. Four weeks post-injection injection, angiogenesis and neurite growth were increased compared to hydrogel alone. The local delivery of VEGF by injectable alginate:fibrinogen-based hydrogel induced some plasticity in the injured spinal cord involving fiber growth into the lesion site
Vascular endothelial growth factor-loaded injectable hydrogel enhances plasticity in the injured spinal cord
We hypothesized that VEGF-containing hydrogels that gelify in situ following injection into a traumatized spinal cord, could stimulate spinal cord regeneration. Injectable hydrogels composed of 0.5% MVG alginate, supplemented or not with fibrinogen, were used. The addition of fibrinogen to alginate had no effect on cell proliferation in vitro but supported neurite growth ex vivo. When injected into a rat spinal cord in a hemisection model, alginate supplemented with fibrinogen was well tolerated. The release of VEGF that was incorporated into the hydrogel was influenced by the VEGF formulation (encapsulated in microspheres or in nanoparticles or in solution (free)). A combination of free VEGF and VEGF-loaded nanoparticles was mixed with alginate:fibrinogen and injected into the lesion of the spinal cord. Four weeks post-injection injection, angiogenesis and neurite growth were increased compared to hydrogel alone. The local delivery of VEGF by injectable alginate:fibrinogen-based hydrogel induced some plasticity in the injured spinal cord involving fiber growth into the lesion site