4 research outputs found

    Multispectral thermal imaging

    Full text link
    Many remote sensing applications rely on imaging spectrometry. Here the authors use imaging spectrometry for thermal and multispectral signatures measured from a satellite platform enhanced with a combination of accurate calibrations and on-board data for correcting atmospheric distortions. The approach is supported by physics-based end-to-end modeling and analysis, which permits a cost-effective balance between various hardware and software aspects. The goal is to develop and demonstrate advanced technologies and analysis tools toward meeting the needs of the customer; at the same time, the attributes of this system can address other applications in such areas as environmental change, agriculture, and volcanology

    Measurement strategies for remote sensing applications

    Full text link
    Remote sensing has grown to encompass many instruments and observations, with concomitant data from a huge number of targets. As evidenced by the impressive growth in the number of published papers and presentations in this field, there is a great deal of interest in applying these capabilities. The true challenge is to transition from directly observed data sets to obtaining meaningful and robust information about remotely sensed targets. We use physics-based end-to-end modeling and analysis techniques as a framework for such a transition. Our technique starts with quantified observables and signatures of a target. The signatures are propagated through representative atmospheres to realistically modeled sensors. Simulated data are then propagated through analysis routines, yielding measurements that are directly compared to the original target attributes. We use this approach to develop measurement strategies which ensure that our efforts provide a balanced approach to obtaining substantive information on our targets

    Constitutively Enhanced Lymphatic Pumping in the Upper Limbs of Women Who Later Develop Breast Cancer-Related Lymphedema.

    Get PDF
    BACKGROUND: It has previously been shown that the lymph drainage rate in both upper limbs is greater in women destined to develop breast cancer-related lymphedema (BCRL) than in those who do not develop BCRL, indicating a constitutive predisposition. We explored constitutive differences further by measuring the maximum lymphatic pump pressure (Ppump) and the rate of (99m)Tc-Nanocoll transport generated by the contractile upper limb lymphatics before and after breast cancer surgery in a group of women who were followed for 2 years to determine their eventual BCRL or non-BCRL status. METHODS AND RESULTS: Ppump and tracer transport rate were measured by lymphatic congestion lymphoscintigraphy in the ipsilateral upper limb in 26 women pre- and post-breast cancer surgery. BCRL occurred in 10/26 (38.5%) cases. Ppump in the women who later developed BCRL (40.0 ± 8.2 mmHg) was 1.7-fold higher than in those who did not develop BCRL (23.1 ± 10.8 mmHg, p = 0.001). Moreover, the rate of lymph tracer transport into the forearm was 2.2-fold greater in the women who later developed BCRL (p = 0.052). Surgery did not significantly reduce Ppump measured 21 weeks postsurgery, but impaired forearm tracer transport in pre-BCRL women by 58% (p = 0.047), although not in those who did not develop BCRL. CONCLUSIONS: Women destined to develop BCRL have higher pumping pressures and lymph transport, indicating harder-working lymphatics before cancer treatment. Axillary lymphatic damage from surgery appears to compromise lymph drainage in those women constitutively predisposed to higher lymphatic pressures and lymph transport
    corecore