10 research outputs found
Recommended from our members
Current practice and developmental efforts for leak detection in US reactor primary systems
Current leak detection practices in 74 operating nuclear reactors have been reviewed. Existing leak detection systems are adequate to ensure a leak-before-break scenario in most situations, but no currently available, single method combines optimal leakage detection sensitivity, leak-locating ability, and leakage measurement accuracy. Simply tightening current leakage limits may produce an unacceptably large number of unnecessary shutdowns. The use of commercially available acoustic monitoring systems or moisture-sensitive tape may improve leak detection capability at specific sites. However, neither of these methods currently provides source discrimination (e.g., to distinguish between leaks from pipe cracks and valves) or leak-rate information (a small leak may saturate the system). A field-implementable acoustic leak detection system is being developed to address these limitations. 5 refs., 3 figs
Recommended from our members
Characterization of acoustic emission signals generated by water flow through intergranular stress corrosion cracks
A program is under way at Argonne National Laboratory (ANL) to develop an independent capability to assess the effectiveness of current and proposed techniques for acoustic leak detection (ALD) in reactor coolant systems. The program will establish whether meaningful quantitative data on flow rates and leak location can be obtained from acoustic signatures of leaks due to intergranular stress corrosion cracks (TGSCCs) and fatigue cracks, and whether these can be distinguished from other types of leaks. 5 refs., 3 figs
VISUALIZATION OF ULTRASONIC-BEAM DISTORTION IN ANISOTROPIC STAINLESS STEEL
The inspection of cast stainless steel and stainless steel piping with a weld overlay is an important nondestructive testing problem in the nuclear industry. The ultrasonic inspection of these components is complicated by their coarse-grain and textured microstructure, which distorts the ultrasonic beam. The distortion of pulsed ultrasonic beams produced by conventional piezoelectric transducers mounted on stainless steel samples was measured by scanning the back surface of the samples with a laser interferometer. The plots illustrate how the beam from a 6.3-mn-dia, 2.25-MHz longitudinal transducer can be skewed, focused, or defocused after passing through samples that are 3.2 or 19.0 mm thick. The crystallographic symmetry of the steel samples varied from isotropic to transverse isotropic
Recommended from our members
Acoustic leak detection and ultrasonic crack detection
A program is under way to assess the effectiveness of current and proposed techniques for acoustic leak detection (ALD) in reactor coolant systems. An ALD facility has been constructed and tests have begun on five laboratory-grown cracks (three fatigue and two thermal-fatigue and two field-induced IGSCC specimens. After ultrasonic testing revealed cracks in the Georgia Power Co. HATCH-1 BWR recirculation header, the utility installed an ALD system. Data from HATCH-1 have given an indication of the background noise level at a BWR recirculation header sweepolet weld. The HATCH leak detection system was tested to determine the sensitivity and dynamic range. Other background data have been acquired at the Watts Bar Nuclear Reactor in Tennessee. An ANL waveguide system, including transducer and electronics, was installed and tested on an accumulator safety injection pipe. The possibility of using ultrasonic wave scattering patterns to discriminate between IGSCCs and geometric reflectors has been explored. Thirteen reflectors (field IGSCCs, graphite wool IGSCCs, weld roots, and slits) were examined. Work with cast stainless steel (SS) included sound velocity and attenuation in isotropic and anisotropic cast SS. Reducing anisotropy does not help reduce attenuation in large-grained material. Large artificial flaws (e.g., a 1-cm-deep notch with a 4-cm path) could not be detected in isotropic centrifugally cast SS (1 to 2-mm grains) by longitudinal or shear waves at frequencies of 1 MHz or greater, but could be detected with 0.5-MHz shear waves. 13 figures
Recommended from our members
Prototype steam generator test at SCTI/ETEC. Acoustic program test plan. [LMFBR]
This document is an integrated test plan covering programs at General Electric (ARSD), Rockwell International (RI) and Argonne National Laboratory (CT). It provides an overview of the acoustic leak detection test program which will be completed in conjunction with the prototype LMFBR steam generator at the Energy Technology Engineering Laboratory. The steam generator is installed in the Sodium Components Test Installation (SCTI). Two acoustic detection systems will be used during the test program, a low frequency system developed by GE-ARSD (GAAD system) and a high frequency system developed by RI-AI (HALD system). These systems will be used to acquire data on background noise during the thermal-hydraulic test program. Injection devices were installed during fabrication of the prototype steam generator to provide localized noise sources in the active region of the tube bundle. These injectors will be operated during the steam generator test program, and it will be shown that they are detected by the acoustic systems
Recommended from our members
Evaluation of methods for leak detection in reactor primary systems and NDE of cast stainless steel
Six cracks, including two field-induced IGSCC specimens and two thermal-fatigue cracks, have been installed in a laboratory acoustic leak detection facility. The IGSCC specimens produce stronger acoustic signals than the thermal-fatigue cracks at equivalent leak rates. Despite significant differences in crack geometry, the acoustic signals from the two IGSCC specimens, tested at the same leak rate, are virtually identical in the frequency range from 200 to 400 kHz. Thus, the quantitative correlations between the acoustic signals and leak rate in the 300 to 400 kHz band are very similar for the two IGSCC specimens. Also, acoustic background data have been acquired during a hot functional sensitivity of acoustic leak detection techniques. In addition, cross-correlation techniques have been successfully used in the laboratory to locate the source of an electronically simulated leak signal
Recommended from our members
Evolution of tritium from deuterided palladium subject to high electrical currents
An increase in the tritium level was detected in deuterium when various configurations of palladium foil or powder and silicon wafers or powder were subject to a high pulsed current. The deuterium, at one atmosphere pressure, and was circulated in a sealed loop containing the cell and an ionization chamber to measure the tritium increase as a function of time. Over 4800 hours of data, spanning 10 cells (including deuterium and hydrogen controls), were collected with this system. Average tritium production has varied from 0.02 to 0.2 nCi/h. Due to experimental constraints we have not been able to measure neutron output with these cells while simultaneously measuring the tritium increase. The question of tritium contamination in the palladium has been primarily resolved by the development of techniques that allow the palladium powder or foil to be reused. Various methods for increasing the tritium production, such as, increased current density, surface modifiers, and higher deuterium loading, will be discussed. 8 refs, 5 figs
Recommended from our members
NDE of stainless steel and on-line leak monitoring of LWRs
The GARD/ANL acoustic leak detection system is under evaluation in the laboratory. Results of laboratory tests with simulated acoustic leak signals and acoustic signals from field-induced intergranular stress corrosion cracks (IGSCCs) indicate that cross-correlation techniques can be used to locate the position of a leak. Leaks from a 2-in. ball valve and a flange were studied and compared with leaks from IGSCCs and fatigue cracks. The dependence of acoustic signal on flow rate and frequency for the valve and the flange was comparable to that of fatigue cracks (thermal and mechanical) and different from that of IGSCCs. Two pipe-to-endcap weldments with overlays were examined. Because the amount of cracking in the specimens was limited, the emphasis was on trying understand the nature of crack overcalling. Four 60-mm-thick cast stainless steel plates with microstructures ranging from equiaxed to primarily columnar grains have been examined with ultrasonic waves. 13 refs., 23 figs
Recommended from our members
Thermoacoustic imaging using heavy ion beams
Ion beams have been used for surface modification, semiconductor device fabrication and for material analysis, which makes ion-material interactions of significant importance. Ion implantation will produce new compositions near the surface by ion mixing or directly by implanting desired ions. Ions exchange their energy to the host material as they travel into the material by several different processes. High energy ions ionize the host atoms before atomic collisions transfer the remaining momentum and stop the incident ion. As they penetrate the surface, the low energy ions ionize the host atoms, but also have a significantly large momentum transfer mechanism near the surface of the material. This leads to atoms, groups of atoms and electrons being ejected from the surface, which is the momentum transfer process of sputtering. This talk addresses the acoustic waves generated during ion implantation using modulated heavy ion beams. The mechanisms for elastic wave generation during ion implantation, in the regimes where sputtering is significant and where implantation is dominant and sputtering is negligible, has been studied. The role of momentum transfer and thermal energy production during ion implantation was compared to laser generated elastic waves in an opaque solid as a reference, since laser generated ultrasound has been extensively studied and is fairly well understood. The thermoelastic response dominated in both high and low ion energy regimes since, apparently, more energy is lost to thermal heat producing mechanisms than momentum transfer processes. The signal magnitude was found to vary almost linearly with incident energy as in the laser thermoelastic regime. The time delays for longitudinal and shear waves-were characteristic of those expected for a purely thermal heating source. The ion beams are intrinsically less sensitive to the albedo of the surface
Recommended from our members
Tritium and neutron measurements of a solid state cell
A solid state cold fusion'' cell was constructed to test for non-equilibrium fusion in a solid. The stimulus for the design was the hypothesis that the electrochemical surface layer in the Pons- Fleischmann cell could be replaced with a metal-insulator- semiconductor (MIS) barrier. Cells were constructed of alternating layers of palladium and silicon powders pressed into a ceramic form and exposed to deuterium gas at 110 psia resulting in a D/Pd ratio of 0.7. Pulses of current were passed through the cells to populate non-equilibrium states at the MIS barriers. One cell showed neutron activity and was found to have a large amount of tritium, other cells have produced tritium at a low rate consistent with neutron emission below the threshold of observability. The branching ratio for n/p has been about 1 {times} 10{sup {minus}9} in all the experiments where a substantial amount of tritium has been found. 11 refs., 9 figs., 2 tabs