1,661 research outputs found

    The effect of quantization on the FCIQMC sign problem

    No full text
    The sign problem in Full Configuration Interaction Quantum Monte Carlo (FCIQMC) without annihilation can be understood as an instability of the psi-particle population to the ground state of the matrix obtained by making all off-diagonal elements of the Hamiltonian negative. Such a matrix, and hence the sign problem, is basis dependent. In this paper we discuss the properties of a physically important basis choice: first versus second quantization. For a given choice of single-particle orbitals, we identify the conditions under which the fermion sign problem in the second quantized basis of antisymmetric Slater determinants is identical to the sign problem in the first quantized basis of unsymmetrized Hartree products. We also show that, when the two differ, the fermion sign problem is always less severe in the second quantized basis. This supports the idea that FCIQMC, even in the absence of annihilation, improves the sign problem relative to first quantized methods. Finally, we point out some theoretically interesting classes of Hamiltonians where first and second quantized sign problems differ, and others where they do not.Comment: 4 pages w/ 2 page appendix, 2 figures, 1 tabl

    First-principles calculations of 2x2 reconstructions of GaN(0001) surfaces involving N, Al, Ga, In, and as atoms

    Get PDF
    The ab initio studies presented here employed a pseudopotential-plane-wave method in order to obtain the minimum-energy configurations of various 22 GaN0001 surfaces involving N, Al, Ga, In, and As atoms. Comparison of the various possible reconstructions allows predictions to be made regarding the most energetically favorable configurations. Such comparisons depend on the value of the effective chemical potential of each atomic species, which can be related directly to experimental growth conditions. The most stable structure as a function of chemical potentials is determined. Based on these results we have characterized the effect of N in the adlayer surface and the stability dependence with number of substitutions as a function of the model employed and the possible surfactant character of some of the added atoms. Surface phase diagrams as a function of the chemical potential have been calculated to show the phase transition between the different reconstructions

    J/ψJ/\psi suppression in Pb+Pb collisions and pTp_T broadening

    Full text link
    We have analysed the NA50 data, on the centrality dependence of pTp_T broadening of J/ψJ/\psi's, in Pb+Pb collisions, at the CERN-SPS. The data were analysed in a QCD based model, where J/ψJ/\psi's are suppressed in 'nuclear' medium. Without any free parameter, the model could explain the NA50 pTp_T broadening data. The data were also analysed in a QGP based threshold model, where J/ψJ/\psi suppression is 100% above a critical density. The QGP based model could not explain the NA50 pTp_T broadening data. We have also predicted the centrality dependence of J/ψJ/\psi suppression and pTp_T broadening at RHIC energy. Both the models, the QGP based threshold model and the QCD based nuclear absorption model, predict pTp_T broadening very close to each other.Comment: The paper was completely revised. The conclusion is also changed. 5 pages, 4 figure

    Macro-Architectures in Spinal Cord Scaffold Implants Influence Regeneration

    Full text link
    Abstract Biomaterial scaffold architecture has not been investigated as a tunable source of influence on spinal cord regeneration. This study compared regeneration in a transected spinal cord within various designed-macro-architecture scaffolds to determine if these architectures alone could enhance regeneration. Three-dimensional (3-D) designs were created and molds were built on a 3-D printer. Salt-leached porous poly(ε-caprolactone) was cast in five different macro-architectures: cylinder, tube, channel, open-path with core, and open-path without core. The two open-path designs were created in this experiment to compare different supportive aspects of architecture provided by scaffolds and their influence on regeneration. Rats received T8 transections and implanted scaffolds for 1 and 3 months. Overall morphology and orientation of sections were characterized by H&E, luxol fast blue, and cresyl violet staining. Borders between intact gray matter and non-regenerated defect were observed from GFAP immunolabeling. Nerve fibers and regenerating axons were identified with Tuj-1 immunolabeling. The open-path designs allowed extension of myelinated fibers along the length of the defect both exterior to and inside the scaffolds and maintained their original defect length up to 3 months. In contrast, the cylinder, tube, and channel implants had a doubling of defect length from secondary damage and large scar and cyst formation with no neural tissue bridging. The open-path scaffold architectures enhanced spinal cord regeneration compared to the three other designs without the use of biological factors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63279/1/neu.2007.0473.pd

    Rapid South Atlantic spreading changes and coeval vertical motion in surrounding continents: Evidence for temporal changes of pressure-driven upper mantle flow

    No full text
    International audienceThe South Atlantic region displays (1) a topographic gradient across the basin, with Africa elevated relative to South America, (2) a bimodal spreading history with fast spreading rates in Late Cretaceous and Eo-Oligocene, and (3) episodic regional uplift events in the adjacent continents concentrated in Late Cretaceous and Oligocene. Here we show that these observations can be linked by dynamic processes within Earth's mantle, through temporal changes in asthenosphere flow beneath the region. The topographic gradient implies westward, pressure-driven mantle flow beneath the basin, while the rapid spreading rate changes, on order 10 million years, require significant decoupling of regional plate motion from the large-scale mantle buoyancy distribution through a mechanically weak asthenosphere. Andean topographic growth in late Miocene can explain the most recent South Atlantic spreading velocity reduction, arising from increased plate boundary forcing associated with the newly elevated topography. But this mechanism is unlikely to explain the Late Cretaceous/Tertiary spreading variations, as changes in Andean paleoelevation at the time are small. We propose an unsteady pressure-driven flow component in the asthenosphere beneath the South Atlantic region to explain the Late Cretaceous/Tertiary spreading rate variations. Temporal changes in mantle flow due to temporal changes in regional mantle pressure gradients imply a correlation of horizontal and vertical motions: we find that this prediction from our models agrees with geologic and geophysical observations of the South Atlantic region, including episodes of passive margin uplift, regional basin reactivation, and magmatic activity

    Serum cartilage oligomeric matrix protein and clinical signs and symptoms of potential pre-radiographic hip and knee pathology

    Get PDF
    OBJECTIVE: To examine the cross-sectional relationship between serum cartilage oligomeric matrix protein (COMP) and hip and knee clinical signs and symptoms in a sample of adults without radiographic hip or knee osteoarthritis (OA). DESIGN: A total of 145 persons with available sera and no evidence of radiographic hip or knee OA (Kellgren-Lawrence grade 0) were randomly selected from the Caucasian participants of the Johnston County Osteoarthritis Project. COMP was quantified by a competitive ELISA assay with a monoclonal antibody 17-C10. Hip and knee clinical signs and symptoms were assessed by physical examination and interview, and their associations with Ln COMP analysed with general linear models. RESULTS: After adjustment for age, gender, body mass index (BMI), and other symptomatic joints, mean Ln COMP was statistically significantly higher among persons with hip-related clinical signs (P=0.018), among those with hip-related symptoms (P=0.046), and among individuals meeting American College of Rheumatology clinical criteria for hip OA (P=0.021). There were no statistically significant associations between any of the knee-related clinical signs and symptoms and Ln COMP. CONCLUSION: Serum COMP may be useful as a biomarker of pre-radiographic hip joint pathology; its utility as a biomarker of pre-radiographic knee joint pathology is unclear

    Investigation of physiological pulsatile flow in a model arterial stenosis using large-eddy and direct numerical simulations

    Get PDF
    Physiologicalpulsatileflow in a 3D model of arterialstenosis is investigated by using largeeddysimulation (LES) technique. The computational domain chosen is a simple channel with a biological type stenosis formed eccentrically on the top wall. The physiological pulsation is generated at the inlet using the first harmonic of the Fourier series of pressure pulse. In LES, the large scale flows are resolved fully while the unresolved subgrid scale (SGS) motions are modelled using a localized dynamic model. Due to the narrowing of artery the pulsatileflow becomes transition-to-turbulent in the downstream region of the stenosis, where a high level of turbulent fluctuations is achieved, and some detailed information about the nature of these fluctuations are revealed through the investigation of the turbulent energy spectra. Transition-to-turbulent of the pulsatileflow in the post stenosis is examined through the various numerical results such as velocity, streamlines, velocity vectors, vortices, wall pressure and shear stresses, turbulent kinetic energy, and pressure gradient. A comparison of the LES results with the coarse DNS are given for the Reynolds number of 2000 in terms of the mean pressure, wall shear stress as well as the turbulent characteristics. The results show that the shear stress at the upper wall is low just prior to the centre of the stenosis, while it is maximum in the throat of the stenosis. But, at the immediate post stenotic region, the wall shear stress takes the oscillating form which is quite harmful to the blood cells and vessels. In addition, the pressure drops at the throat of the stenosis where the re-circulated flow region is created due to the adverse pressure gradient. The maximum turbulent kinetic energy is located at the post stenosis with the presence of the inertial sub-range region of slope −5/3

    Observed photodetachment in parallel electric and magnetic fields

    Full text link
    We investigate photodetachment from negative ions in a homogeneous 1.0-T magnetic field and a parallel electric field of approximately 10 V/cm. A theoretical model for detachment in combined fields is presented. Calculations show that a field of 10 V/cm or more should considerably diminish the Landau structure in the detachment cross section. The ions are produced and stored in a Penning ion trap and illuminated by a single-mode dye laser. We present preliminary results for detachment from S- showing qualitative agreement with the model. Future directions of the work are also discussed.Comment: Nine pages, five figures, minor revisions showing final publicatio

    Meson screening masses from lattice QCD with two light and the strange quark

    Full text link
    We present results for screening masses of mesons built from light and strange quarks in the temperature range of approximately between 140 MeV to 800 MeV. The lattice computations were performed with 2+1 dynamical light and strange flavors of improved (p4) staggered fermions along a line of constant physics defined by a pion mass of about 220 MeV and a kaon mass of 500 MeV. The lattices had temporal extents Nt = 4, 6 and 8 and aspect ratios of Ns / Nt \geq 4. At least up to a temperature of 140 MeV the pseudo-scalar screening mass remains almost equal to the corresponding zero temperature pseudo-scalar (pole) mass. At temperatures around 3Tc (Tc being the transition temperature) the continuum extrapolated pseudo-scalar screening mass approaches very close to the free continuum result of 2 \pi T from below. On the other hand, at high temperatures the vector screening mass turns out to be larger than the free continuum value of 2 \pi T. The pseudo-scalar and the vector screening masses do not become degenerate even for a temperature as high as 4Tc. Using these mesonic spatial correlation functions we have also investigated the restoration of chiral symmetry and the effective restoration of the axial symmetry. We have found that the vector and the axial-vector screening correlators become degenerate, indicating chiral symmetry restoration, at a temperature which is consistent with the QCD transition temperature obtained in previous studies. On the other hand, the pseudo-scalar and the scalar screening correlators become degenerate only at temperatures larger than 1.3Tc, indicating that the effective restoration of the axial symmetry takes place at a temperature larger than the QCD transition temperature.Comment: Published versio
    corecore