27 research outputs found

    Targeted Therapy in Hepatocellular Carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is one of the commonest cancers worldwide, as well as a common cause of cancer-related death. HCC frequently occurs in the setting of a diseased cirrhotic liver and many patients present at an advanced stage of disease. Together with a poor functional status, this often precludes the use of systemic therapy, especially conventional cytotoxic drugs. Moreover, HCC is known to be a relatively chemo-refractory tumor. There have been many targeted drugs that have shown potential in the treatment of HCC. Many clinical trials have been carried out with many more in progress. They include trials evaluating a single targeted therapy alone, two or more targeted therapy in tandem or a combination of targeted therapy and conventional chemotherapy. In this article, we seek to review some of the more important trials examining the use of targeted therapy in HCC and to look into what the future holds in terms of targeted treatment of HCC

    A comparative study of tumour-on-chip models with patient-derived xenografts for predicting chemotherapy efficacy in colorectal cancer patients

    No full text
    Inter-patient and intra-tumour heterogeneity (ITH) have prompted the need for a more personalised approach to cancer therapy. Although patient-derived xenograft (PDX) models can generate drug response specific to patients, they are not sustainable in terms of cost and time and have limited scalability. Tumour Organ-on-Chip (OoC) models are in vitro alternatives that can recapitulate some aspects of the 3D tumour microenvironment and can be scaled up for drug screening. While many tumour OoC systems have been developed to date, there have been limited validation studies to ascertain whether drug responses obtained from tumour OoCs are comparable to those predicted from patient-derived xenograft (PDX) models. In this study, we established a multiplexed tumour OoC device, that consists of an 8 × 4 array (32-plex) of culture chamber coupled to a concentration gradient generator. The device enabled perfusion culture of primary PDX-derived tumour spheroids to obtain dose-dependent response of 5 distinct standard-of-care (SOC) chemotherapeutic drugs for 3 colorectal cancer (CRC) patients. The in vitro efficacies of the chemotherapeutic drugs were rank-ordered for individual patients and compared to the in vivo efficacy obtained from matched PDX models. We show that quantitative correlation analysis between the drug efficacies predicted via the microfluidic perfusion culture is predictive of response in animal PDX models. This is a first study showing a comparative framework to quantitatively correlate the drug response predictions made by a microfluidic tumour organ-on-chip (OoC) model with that of PDX animal models.</p

    Identification of mechanism of cancer-cell-specific reactivation of hTERT offers therapeutic opportunities for blocking telomerase specifically in human colorectal cancer

    No full text
    Transcriptional reactivation of hTERT is the limiting step in tumorigenesis. While mutations in hTERT promoter present in 19% of cancers are recognized as key drivers of hTERT reactivation, mechanisms by which wildtype hTERT (WT-hTERT) promoter is reactivated, in majority of human cancers, remain unknown. Using primary colorectal cancers (CRC) we identified Tert INTeracting region 2 (T-INT2), the critical chromatin region essential for reactivating WT-hTERT promoter in CRCs. Elevated β-catenin and JunD level in CRC facilitates chromatin interaction between hTERT promoter and T-INT2 that is necessary to turn on hTERTexpression. Pharmacological screens uncovered salinomycin, which inhibits JunD mediated hTERT-T-INT2 interaction that is required for the formation of a stable transcription complex on the hTERT promoter. Our results showed for the first time how known CRC alterations, such as APC, lead to WT-hTERT promoter reactivation during stepwise-tumorigenesis and provide a new perspective for developing cancer-specific drugs.Agency for Science, Technology and Research (A*STAR)Ministry of Education (MOE)National Research Foundation (NRF)Published versionNational Research Foundation under its Competitive Research Programme [NRF-CRP17-2017-02 to V.T.]; Agency for Science Technology and Research, Singapore (A*STAR) for funding and supporting the Tergaonkar laboratory and this project; NRF Singapore and the Singapore Ministry of Education under its Research Centres of Excellence initiative; Singapore Ministry of Education Academic Research Fund Tier 2 grant [MOET2EP30120-0009 to M.J.F.]. Funding for open access charge: The V.T. laboratory is supported by the National Research Foundation-Competitive Research Programme [NRF-CRP17-2017-02]; IMCB A*STAR
    corecore